Download Free Classical And Modern Direction Of Arrival Estimation Book in PDF and EPUB Free Download. You can read online Classical And Modern Direction Of Arrival Estimation and write the review.

Classical and Modern Direction of Arrival Estimation contains both theory and practice of direction finding by the leading researchers in the field. This unique blend of techniques used in commercial DF systems and state-of-the art super-resolution methods is a valuable source of information for both practicing engineers and researchers. Key topics covered are: - Classical methods of direction finding - Practical DF methods used in commercial systems - Calibration in antenna arrays - Array mapping, fast algorithms and wideband processing - Spatial time-frequency distributions for DOA estimation - DOA estimation in threshold region - Higher order statistics for DOA estimation - Localization in sensor networks and direct position estimation - Brings together in one book classical and modern DOA techniques, showing the connections between them - Contains contributions from the leading people in the field - Gives a concise and easy- to- read introduction to the classical techniques - Evaluates the strengths and weaknesses of key super-resolution techniques - Includes applications to sensor networks
This third volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in array and statistical signal processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in array and statistical signal processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning Authoritative reference on the state of the art in the field with additional coverage of important foundational concepts Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning presents cutting-edge research advances in the rapidly growing areas in optical and RF electromagnetic device modeling, simulation, and inverse-design. The text provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book covers all-dielectric and metallodielectric optical metasurface deep learning-accelerated inverse-design, deep neural networks for inverse scattering, applications of deep learning for advanced antenna design, and other related topics. To aid in reader comprehension, each chapter contains 10-15 illustrations, including prototype photos, line graphs, and electric field plots. Contributed to by leading research groups in the field, sample topics covered in Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning include: Optical and photonic design, including generative machine learning for photonic design and inverse design of electromagnetic systems RF and antenna design, including artificial neural networks for parametric electromagnetic modeling and optimization and analysis of uniform and non-uniform antenna arrays Inverse scattering, target classification, and other applications, including deep learning for high contrast inverse scattering of electrically large structures Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning is a must-have resource on the topic for university faculty, graduate students, and engineers within the fields of electromagnetics, wireless communications, antenna/RF design, and photonics, as well as researchers at large defense contractors and government laboratories.
This book constitutes the refereed proceedings of the 4th EAI International Conference on Industrial Networks and Intelligent Systems, INISCOM 2018, held in Da Nang, Vietnam, in August 2018. The 26 full papers were selected from 38 submissions and are organized thematically in tracks: Telecommunications Systems and Networks; Industrial Networks and Applications; Hardware and Software Design and Development; Information Processing and Data Analysis; Signal Processing; Security and Privacy.
This book reflects the latest research trends, methods, and experimental results in the field of electrical and information technologies for rail transportation, which covers abundant state-of-the-art research theories and ideas. As a vital field of research that is highly relevant to current developments in a number of technological domains, the subjects it covered include intelligent computing, information processing, communication technology, automatic control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academicians, and industrial professionals to present the most innovative research and development in the field of rail transportation electrical and information technologies. Engineers and researchers in academia, industry, and government will also explore an insightful view of the solutions that combine ideas from multiple disciplines in this field. The volumes serve as an excellent reference work for researchers and graduate students working on rail transportation and electrical and information technologies.
This practical resource provides an overview of machine learning (ML) approaches as applied to electromagnetics and antenna array processing. Detailed coverage of the main trends in ML, including uniform and random array processing (beamforming and detection of angle of arrival), antenna optimization, wave propagation, remote sensing, radar, and other aspects of electromagnetic design are explored. An introduction to machine learning principles and the most common machine learning architectures and algorithms used today in electromagnetics and other applications is presented, including basic neural networks, gaussian processes, support vector machines, kernel methods, deep learning, convolutional neural networks, and generative adversarial networks. Applications in electromagnetics and antenna array processing that are solved using machine learning are discussed, including antennas, remote sensing, and target classification.
Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.
This book constitutes the refereed proceedings of the Second International Conference on Ubiquitous Communications and Network Computing, UBICNET 2019, held in Bangalore, India, in February 2019. The 19 full papers were selected from 52 submissions and are basically arranged in different sessions on security and energy efficient computing, software defined networks, cloud computing and internet of things applications, and the advanced communication systems and networks.
IoT and Spacecraft Informatics provides the theory and applications of IoT systems in the design, development and operation of spacecraft. Sections present a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions, key technologies, protocols, and technical building blocks that combine into complete IoT solutions. The book features the latest advances, findings and state-of-the-art in research, case studies, development and implementation of IoT technologies for spacecraft and space systems. In addition, it concentrates on different aspects and techniques to achieve automatic control of spacecraft. This book is for researchers, PhD students, engineers and specialists in aerospace engineering as well as those in computer science, computer engineering or mechatronics. - Presents state-of-the-art research on IoT and spacecraft technology - Provides artificial intelligence-based solutions and robotics for space exploration applications - Introduces new applications and case studies of IoT and spacecraft informatics
International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fields of Membrane Computing, Evolutionary Computing and Genetic Algorithms, DNA and Molecular Computing, Biological Computing, Swarm Intelligence, Autonomy-Oriented Computing, Cellular and Molecular Automata, Complex Systems, etc. Professor Zhixiang Yin is the Dean of the School of Science, Anhui University of Science & Technology, China. Professor Linqiang Pan is the head of the research group of Natural Computing at Huazhong University of Science and Technology, Wuhan, China. Professor Xianwen Fang also works at the Anhui University of Science & Technology.