Download Free Classical Analysis In The Complex Plane Book in PDF and EPUB Free Download. You can read online Classical Analysis In The Complex Plane and write the review.

This authoritative text presents the classical theory of functions of a single complex variable in complete mathematical and historical detail. Requiring only minimal, undergraduate-level prerequisites, it covers the fundamental areas of the subject with depth, precision, and rigor. Standard and novel proofs are explored in unusual detail, and exercises – many with helpful hints – provide ample opportunities for practice and a deeper understanding of the material. In addition to the mathematical theory, the author also explores how key ideas in complex analysis have evolved over many centuries, allowing readers to acquire an extensive view of the subject’s development. Historical notes are incorporated throughout, and a bibliography containing more than 2,000 entries provides an exhaustive list of both important and overlooked works. Classical Analysis in the Complex Plane will be a definitive reference for both graduate students and experienced mathematicians alike, as well as an exemplary resource for anyone doing scholarly work in complex analysis. The author’s expansive knowledge of and passion for the material is evident on every page, as is his desire to impart a lasting appreciation for the subject. “I can honestly say that Robert Burckel’s book has profoundly influenced my view of the subject of complex analysis. It has given me a sense of the historical flow of ideas, and has acquainted me with byways and ancillary results that I never would have encountered in the ordinary course of my work. The care exercised in each of his proofs is a model of clarity in mathematical writing...Anyone in the field should have this book on [their bookshelves] as a resource and an inspiration.”- From the Foreword by Steven G. Krantz
This book is an attempt to cover some of the salient features of classical, one variable complex function theory. The approach is analytic, as opposed to geometric, but the methods of all three of the principal schools (those of Cauchy, Riemann and Weierstrass) are developed and exploited. The book goes deeply into several topics (e.g. convergence theory and plane topology), more than is customary in introductory texts, and extensive chapter notes give the sources of the results, trace lines of subsequent development, make connections with other topics, and offer suggestions for further reading. These are keyed to a bibliography of over 1,300 books and papers, for each of which volume and page numbers of a review in one of the major reviewing journals is cited. These notes and bibliography should be of considerable value to the expert as well as to the novice. For the latter there are many references to such thoroughly accessible journals as the American Mathematical Monthly and L'Enseignement Mathématique. Moreover, the actual prerequisites for reading the book are quite modest; for example, the exposition assumes no prior knowledge of manifold theory, and continuity of the Riemann map on the boundary is treated without measure theory.
All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Classical Complex Analysis provides an introduction to one of the remarkable branches of exact science, with an emphasis on the geometric aspects of analytic functions. This volume begins with a geometric description of what a complex number is, followed by a detailed account of algebraic, analytic and geometric properties of standard complex-valued functions. Geometric properties of analytic functions are then developed and described In detail, and various applications of residues are Included; analytic continuation is also introduced. --Book Jacket.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painlevé transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Bäcklund transformations and higher order analogues, treated separately for each of these six equations. The final chapter offers a short overview of applications of Painlevé equations, including an introduction to their discrete counterparts. Due to the present important role of Painlevé equations in physical applications, this monograph should be of interest to researchers in both mathematics and physics and to graduate students interested in mathematical physics and the theory of differential equations.
Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.
This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.
This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.