Download Free Cjche Book in PDF and EPUB Free Download. You can read online Cjche and write the review.

This proceedings volume contains selected papers presented at the 2014 International Conference on Information Engineering and Education Science (ICIEES 2014), held June 12-13 in Hong Kong, China. The objective of ICIEES 2014 was to provide a platform for researchers, engineers, academics as well as industry professionals from all over the world to
This book introduces recent developments of membrane technologies applied to gas and water treatments, energy processes and environmental issues. Novel knowledge and mechanisms on membrane fabrication and usage in energy, chemical, and environmental engineering are detailed in 12 book chapters from France, UK, Spain, China, Nigeria, Iran and Pakistan. The information in this book will be useful for engineers, students, and experts in these fields.
Today's frustrations and anxieties resulting from two energy crises in only one decade, show us the problems and fragility of a world built on high energy consumption, accustomed to the use of cheap non-renewable energy and to the acceptance of eXisting imbalances between the resources and demands of countries. Despite all these stressing factors, our world is still hesitatins about the urgency of undertaking new and decisive research that could stabilize our future, Could this trend change in the near future? In our view, two different scenarios are possible. A renewed energy tension could take place with an unpredictable timing mostly related to political and economic factors, This could bring again scientists and technologists to a new state of shock and awaken our talents, A second interesting and beneficial scenario could result from the positive influence of a new generation of researchers that with or without immediate crisis, acting both in industry and academia, will face the challenge of developing technologies and processes to pave the way to a less vulnerable society, Because Chemical Reactor Design and Technology activities are at the heart of these required new technologies the timeliness of the NATO-Advanced Study Institute at the University of Western Ontario, London, was very appropriate.
Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates comprises an extensive eight-volume series delving into the intricate realms of both the theoretical fundamentals and practical methodologies associated with the various facets of natural gas. Encompassing the entire spectrum from exploration and extraction to synthesis, processing, purification, and the generation of valuable chemicals and energy, these volumes also navigate through the complexities of transportation, storage challenges, hydrate formation, extraction, and prevention. In Volume 3 titled Natural Gas Hydrates, the fundamental aspects of natural gas hydrates, their associated disasters, and case studies are introduced. This book delves into the intricate details of hydrate structures, physio-chemical properties, and thermodynamics, offering a comprehensive understanding. This volume also explores hydrates as an energy source and covers their dissociation methods. A significant focus is placed on the challenges of natural gas hydrates formation in pipelines, accompanied by prevention techniques. Additionally, this book discusses the discovery and extraction of natural gas hydrates from oceans, shedding light on related geophysical indicators. Introduces characteristics and properties of natural gas hydrates Describes pipeline natural gas hydrates and prevention methods Discusses oceanic natural gas hydrates and extraction methods
Current Trends and Future Developments on (Bio-) Membranes: Techniques of Computational Fluid Dynamic (CFD) for Development of Membrane Technology provides updates on new progress in membrane processes due to various challenges and how many industrial companies and academic centers are carrying out these processes. Chapters help readers understand techniques of computational fluid dynamic (CFD) for the development of membrane technology, including an introduction to the technologies, their applications, and the advantages/disadvantages of CFD modeling of various membrane processes. In addition, the book compares these modeling methods with other traditional separation systems and covers fouling and concentration polarization problems. The book is a key reference for R&D managers interested in the development of membrane technologies as well as academic researchers and postgraduate students working in the wider areas of strategic treatments, separation and purification processes. Includes developments of membrane technologies in different applications by using CFD tools Describes CFD methods for evaluation and optimization of membrane process performance Indicates CFD method advantages over other modeling strategies for the analysis of membrane/membrane reactor processes
The purification of hydrogen is necessary to fulfill purity standards of a wide variety of prospective uses, and it is also a key concern regarding the efficient supply of hydrogen. Hydrogen Purification and Separation reviews various hydrogen separation methods as well as membranes used in hydrogen separation. It discusses absorption and adsorption methods, as well as novel technologies such as cryogenic methods and plasma‐assisted technology, and the related economic assessments and environmental challenges. Introduces miscellaneous membrane‐assisted processes for hydrogen separation Provides different physiochemical absorption methods for hydrogen purification Discusses application of sorbents and swing technologies in hydrogen purification Uniquely covers hydrogen separation using novel methods Includes economic assessments and environmental challenges of hydrogen purification in detail Part of the multivolume Handbook of Hydrogen Production and Applications, this standalone book guides researchers and academics in chemical, environmental, energy, and related areas of engineering interested in development and implementation of hydrogen production technologies.
Biofuels and Biorefining: Volume Two: Intensified Processes and Biorefineries considers intensification and optimization processes for biofuels and biomass-derived products in single and biorefinery schemes. Chapters cover production processes for liquid biofuels, introducing all feasible intensification alternatives for each process, process intensification methods for the production of value-added products, the importance of detailed CFD-based studies, controllability studies, strategies for risk analysis in intensified processes, the concept of biorefinery for the co-production of biofuels/biomass derived value-added products, and the importance of process intensification in the biorefinery scheme. Final chapters discuss how to ensure the sustainability of the intensified process and minimize the societal impact of biorefineries through various strategies, including supply chain optimization and lifecycle analysis. Each chapter is supported by industry case studies that address key aspects and impacts of intensification and optimization processes. Integrates basic concepts of process intensification and its application to the production of biofuels in a single resource Includes case studies related to modeling, safety, control, supply chain, lifecycle analysis, and the CFD of biofuel production processes Provides a sustainability assessment of biorefinery systems from a lifecycle perspective
Nanocomposite Membranes for Water and Gas Separation presents an introduction to the application of nanocomposite membranes in both water and gas separation processes. This in-depth literature review and discussion focuses on state-of-the-art nanocomposite membranes, current challenges and future progress, including helpful guidelines for the further improvement of these materials for water and gas separation processes. Chapters address material development, synthesis protocols, and the numerical simulation of nanocomposite membranes, along with current challenges and future trends in the areas of water and gas separation. Explains the development of nanocomposite membranes through bio-mimicking nanomaterials Discusses the surface modification of nanomaterials to fabricate robust nanocomposite membranes Outlines the environmental and operational challenges for the application of nanocomposite membranes