Download Free Circulant Graphs Lattices And Spherical Codes Book in PDF and EPUB Free Download. You can read online Circulant Graphs Lattices And Spherical Codes and write the review.

This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.
This book provides a first course on lattices – mathematical objects pertaining to the realm of discrete geometry, which are of interest to mathematicians for their structure and, at the same time, are used by electrical and computer engineers working on coding theory and cryptography. The book presents both fundamental concepts and a wealth of applications, including coding and transmission over Gaussian channels, techniques for obtaining lattices from finite prime fields and quadratic fields, constructions of spherical codes, and hard lattice problems used in cryptography. The topics selected are covered in a level of detail not usually found in reference books. As the range of applications of lattices continues to grow, this work will appeal to mathematicians, electrical and computer engineers, and graduate or advanced undergraduate in these fields.
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.