Download Free Cilia Motors And Regulation Book in PDF and EPUB Free Download. You can read online Cilia Motors And Regulation and write the review.

Along with its companion volume on axonemal dynein-mediated motility, this book provides researchers with a comprehensive and up-to-date source of methods for the analysis cilia and flagella, focusing primarily on approaches that have been devised or significantly extended since the last volume of Methods in Cell Biology on this topic (volume 47, 1995). Edited by Stephen M. King and Gregory J. Pazour, the newest installment of this highly acclaimed serial will serve as an essential addition to the study of cilia and flagella. - Covers protocols for cilia and flagella across systems and species - Both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time - Relevant to clinicians interested in respiratory disease, male infertility, and other syndromes who need to learn biochemical, molecular, and genetic approaches to studying cilia, flagella, and related structures
In recent years, the role of cilia in the study of health, development and disease has been increasingly clear, and new discoveries have made this an exciting and important field of research. This comprehensive volume, a complement to the new three-volume treatment of cilia and flagella by King and Pazour, presents easy-to-follow protocols and detailed background information for researchers working with cilia and flagella. - Covers protocols for primary cilia across several systems and species - Both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time - Relevant to clinicians and scientists working in a wide range of fields
Why a Book on Paramecium? Biologists usually concentrate their efforts on a single problem and a single organism. There is a difficulty with this practice, however, for as work on a problem proceeds it often becomes more ad vantageous to study the problem in another organism. Some biologists avoid the difficulty by moving from one organism to the other as the problem de mands. However, this tactic also has a disadvantage, for a thorough knowledge of the life cycle and thorough mastery of ways to handle a given organism in the laboratory are obviously of great importance to the researcher, and one can never know several organisms as well as one can know a single one. Another way of doing research is to pick the organism, learn all one can about it from all points of view, and then assess the significance of the findings. Tracy Sonneborn practiced research in very much this way. He would have found virtually every chapter in this volume about Paramecium a fascinating summary of one of his areas of research. Indeed, the beginnings of most of the topics in this book are founded on his studies. With every new fact he learned about Paramecium, he carefully assessed the significance of his findings, not on ly for research on protozoa, but for biology in general. His work, and in a way this book too, are indicative of the success of his strategy.
Cilia and Flagella presents protocols accessible to all individuals working with eukaryotic cilia and flagella. These recipes delineate laboratory methods and reagents, as well as critical steps and pitfalls of the procedures. The volume covers the roles of cilia and flagella in cell assembly and motility, the cell cycle, cell-cell recognition and other sensory functions, as well as human diseases and disorders. Students, researchers, professors, and clinicians should find the book's combination of "classic" and innovative techniques essential to the study of cilia and flagella.Key Features* A complete guide containing more than 80 concise technical chapters friendly to both the novice and experienced researcher* Covers protocols for cilia and flagella across systems and species from Chlamydomonas and Euglena to mammals* Both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time, including microscopy, electrophoresis, and PCR* Relevant to clinicians interested in respiratory disease, male infertility, and other syndromes, who need to learn biochemical, molecular, and genetic approaches to studying cilia, flagella, and related structures
Research on dyneins has a direct impact on human diseases, such as viruses and cancer. With an accompanying website showing over 100 streaming videos of cell dynamic behavior for best comprehension of material, Dynein: Structure, Biology and Disease is the only reference covering the structure, biology and application of dynein research to human disease. From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine, genetics and medicine. Broad-based up-to-date resource for the dynein class of molecular motors Chapters written by world experts in their topics Numerous well-illustrated figures and tables included to complement the text, imparting comprehensive information on dynein composition, interactions, and other fundamental features
Integrated Nano-Biomechanics provides an integrated look into the rapidly evolving field of nanobiomechanics. The book demystifies the processes in living organisms at the micro- and nano-scale through mechanics, using theoretical, computational and experimental means. The book develops the concept of integrating different technologies along the hierarchical structure of biological systems and clarifies biomechanical interactions among different levels for the analysis of multi-scale pathophysiological phenomena. With a focus on nano-scale processes and biomedical applications, it is shown how knowledge obtained can be utilized in a range of areas, including diagnosis and treatment of various human diseases and alternative energy production. This book is based on collaboration of researchers from a unique combination of fields, including biomechanics, computational mechanics, GPU application, electron microscopy, biology of motile micro-organisms, entomological mechanics and clinical medicine. The book will be of great interest to scientists and researchers involved in disciplines, such as micro- and nano-engineering, bionanotechnology, biomedical engineering, micro- and nano-scale fluid-mechanics (such as in MEMS devices), nanomedicine and microbiology, as well as industries such as optical devices, computer simulation, plant based energy sources and clinical diagnosis of the gastric diseases. - Provides knowledge of integrated biomechanics, focusing on nano-scale, in this rapidly growing research field - Explains how the different technologies can be integrated and applied in a variety of biomedical application fields, as well as for alternative energy sources - Uses a collaborative, multidisciplinary approach to provide a comprehensive coverage of nano-biomechanics
Isabelle Vernos and a panel of hands-on experts present their most productive and reproducible techniques for the identification, purification, and characterization of the kinesin superfamily of microtubule-dependent motors. The methods range from the most basic to the most sophisticated and include step-by-step instructions and extensive cautionary notes to ensure experimental success. Among the approaches considered are methods to express and purify kinesins in different systems, to characterize microtubule-enhanced ATPase activity and motility properties, and to test microtubule destabilizing activity. Comprehensive and highly practical, Kinesin Protocols makes available all the key basic and cutting-edge methods needed to successfully study the multifaceted world of kinesin-like proteins and to explore their many functions.
Dyneins are molecular motors that are involved in various cellular processes, such as cilia and flagella motility, vesicular transport, and mitosis. Since the first edition of this book was published in 2012, there has been a significant breakthrough: the crystal structures of the motor domains of cytoplasmic dynein have been solved and the previously unknown details of this huge and complex molecule have been unveiled. This new edition contains 14 chapters written by researchers in the US, Europe, and Asia, including 3 new chapters that incorporate new fields. The other chapters have also been substantially updated. Compared with the earlier edition, this book focuses more on the motile mechanisms of dynein, especially by biophysical methods such as cryo-EM, X-ray crystallography, and single-molecule nanometry. It is a major handbook for frontline researchers as well as for advanced students studying cell biology, molecular biology, biochemistry, biophysics, and structural biology.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a highly prevalent hereditary renal disorder in which fluid-filled cysts are appeared in both kidneys. Main causative genes of ADPKD are PKD1 and PKD2, encoding for polycystin-1 (PC1) and polycystin-2 (PC2) respectively. Those proteins are localized on primary cilia and function as mechanosensor in response to the fluid flow, translating mechanistic stimuli into calcium signaling. With mutations either of PKD1 or PKD2, hyper-activated renal tubular epithelial cell proliferation is observed, followed by disrupted calcium homeostasis and aberrant intracellular cyclic AMP (cAMP) accumulation. Increased cell proliferation with fluid secretion leads to the development of thousands of epithelial-lined, fluid-filled cysts in kidneys. It is also accompanied by interstitial inflammation, fibrosis, and finally reaching end-stage renal disease (ESRD). In human ADPKD, the age at which renal failure typically occurs is later in life, however no specific targeted medications are available to cure ADPKD. Recently, potential therapeutic targets or surrogate diagnostic biomarkers for ADPKD are proposed with the advances in the understanding of ADPKD pathogenesis, and some of them were attempted for clinical trials. Herein, we will summarize genetic and epi-genetic molecular mechanisms in ADPKD progression, and overview the currently available biomarkers or potential therapeutic reagents suggested.