Download Free Chromosome Structural Variants Epidemiology Identification And Contribution To Human Diseases Book in PDF and EPUB Free Download. You can read online Chromosome Structural Variants Epidemiology Identification And Contribution To Human Diseases and write the review.

A grand summary and synthesis of the tremendous amount of data now available in the post genomic era on the structural features, architecture, and evolution of the human genome. The authors demonstrate how such architectural features may be important to both evolution and to explaining the susceptibility to those DNA rearrangements associated with disease. Technologies to assay for such structural variation of the human genome and to model genomic disorders in mice are also presented. Two appendices detail the genomic disorders, providing genomic features at the locus undergoing rearrangement, their clinical features, and frequency of detection.
First edition published in 2002. Second edition published in 2008.
A comprehensive, up-to-date resource providing information about genetic influences on disorders of behavior.
This book will serve as a primer for both laboratory and field scientists who are shaping the emerging field of molecular epidemiology. Molecular epidemiology utilizes the same paradigm as traditional epidemiology but uses biological markers to identify exposure, disease or susceptibility. Schulte and Perera present the epidemiologic methods pertinent to biological markers. The book is also designed to enumerate the considerations necessary for valid field research and provide a resource on the salient and subtle features of biological indicators.
Over the past century, we have made great strides in reducing rates of disease and enhancing people's general health. Public health measures such as sanitation, improved hygiene, and vaccines; reduced hazards in the workplace; new drugs and clinical procedures; and, more recently, a growing understanding of the human genome have each played a role in extending the duration and raising the quality of human life. But research conducted over the past few decades shows us that this progress, much of which was based on investigating one causative factor at a time—often, through a single discipline or by a narrow range of practitioners—can only go so far. Genes, Behavior, and the Social Environment examines a number of well-described gene-environment interactions, reviews the state of the science in researching such interactions, and recommends priorities not only for research itself but also for its workforce, resource, and infrastructural needs.
Jasper's Basic Mechanisms, Fourth Edition, is the newest most ambitious and now clinically relevant publishing project to build on the four-decade legacy of the Jasper's series. In keeping with the original goal of searching for "a better understanding of the epilepsies and rational methods of prevention and treatment.", the book represents an encyclopedic compendium neurobiological mechanisms of seizures, epileptogenesis, epilepsy genetics and comordid conditions. Of practical importance to the clinician, and new to this edition are disease mechanisms of genetic epilepsies and therapeutic approaches, ranging from novel antiepileptic drug targets to cell and gene therapies.
Genetics and Evolution of Infectious Diseases is at the crossroads between two major scientific fields of the 21st century: evolutionary biology and infectious diseases. The genomic revolution has upset modern biology and has revolutionized our approach to ancient disciplines such as evolutionary studies. In particular, this revolution is profoundly changing our view on genetically driven human phenotypic diversity, and this is especially true in disease genetic susceptibility. Infectious diseases are indisputably the major challenge of medicine. When looking globally, they are the number one killer of humans and therefore the main selective pressure exerted on our species. Even in industrial countries, infectious diseases are now far less under control than 20 years ago. The first part of this book covers the main features and applications of modern technologies in the study of infectious diseases. The second part provides detailed information on a number of the key infectious diseases such as malaria, SARS, avian flu, HIV, tuberculosis, nosocomial infections and a few other pathogens that will be taken as examples to illustrate the power of modern technologies and the value of evolutionary approaches. Takes an integrated approach to infectious diseases Includes contributions from leading authorities Provides the latest developments in the field
Today, scores of companies, primarily in the United States and Europe, are offering whole genome scanning services directly to the public. The proliferation of these companies and the services they offer demonstrate a public appetite for this information and where the future of genetics may be headed; they also demonstrate the need for serious discussion about the regulatory environment, patient privacy, and other policy implications of direct-to-consumer (DTC) genetic testing. Rapid advances in genetic research already have begun to transform clinical practice and our understanding of disease progression. Existing research has revealed a genetic basis or component for numerous diseases, including Parkinson's disease, Alzheimer's disease, diabetes, heart disease, and several forms of cancer. The availability of the human genome sequence and the HapMap, plummeting costs of high-throughput screening, and increasingly sophisticated computational analyses have led to an explosion of discoveries of linkages between patterns of genetic variation and disease susceptibility. While this research is by no means a straight path toward better public health, improved knowledge of the genetic linkages has the potential to change fundamentally the way health professionals and public health practitioners approach the prevention and treatment of disease. Realizing this potential will require greater sophistication in the interpretation of genetic tests, new training for physicians and other diagnosticians, and new approaches to communicating findings to the public. As this rapidly growing field matures, all of these questions require attention from a variety of perspectives. To discuss some of the foregoing issues, several units of the National Academies held a workshop on August 31 and September 1, 2009, to bring together a still-developing community of professionals from a variety of relevant disciplines, to educate the public and policy-makers about this emerging field, and to identify issues for future study. The meeting featured several invited presentations and discussions on the many technical, legal, policy, and ethical questions that such DTC testing raises, including: (1) overview of the current state of knowledge and the future research trajectory; (2) shared genes and emerging issues in privacy; (3) the regulatory framework; and (4) education of the public and the medical community.
What can social science, and demography in particular, reasonably expect to learn from biological information? There is increasing pressure for multipurpose household surveys to collect biological data along with the more familiar interviewer-respondent information. Given that recent technical developments have made it more feasible to collect biological information in non-clinical settings, those who fund, design, and analyze survey data need to think through the rationale and potential consequences. This is a concern that transcends national boundaries. Cells and Surveys addresses issues such as which biologic/genetic data should be collected in order to be most useful to a range of social scientists and whether amassing biological data has unintended side effects. The book also takes a look at the various ethical and legal concerns that such data collection entails.