Download Free Chromosome Biology As A Key To Understand Disease Mechanisms Genome Architecture And Evolution Book in PDF and EPUB Free Download. You can read online Chromosome Biology As A Key To Understand Disease Mechanisms Genome Architecture And Evolution and write the review.

This topic has been realized, and is in collaboration with Dr. Constanze Pentzold, Post Doctoral Researcher at the Institute of Human Genetics, University Hospital Jena.
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine Gathers the most pressing questions in genomic and cytogenomic research Offers alternative explanations to timely puzzles in the field Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more
Over the past century, we have made great strides in reducing rates of disease and enhancing people's general health. Public health measures such as sanitation, improved hygiene, and vaccines; reduced hazards in the workplace; new drugs and clinical procedures; and, more recently, a growing understanding of the human genome have each played a role in extending the duration and raising the quality of human life. But research conducted over the past few decades shows us that this progress, much of which was based on investigating one causative factor at a time—often, through a single discipline or by a narrow range of practitioners—can only go so far. Genes, Behavior, and the Social Environment examines a number of well-described gene-environment interactions, reviews the state of the science in researching such interactions, and recommends priorities not only for research itself but also for its workforce, resource, and infrastructural needs.
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.
Benign & Pathological Chromosomal Imbalances systematically clarifies the disease implications of cytogenetically visible copy number variants (CG-CNV) using cytogenetic assessment of heterochromatic or euchromatic DNA variants. While variants of several megabasepair can be present in the human genome without clinical consequence, visually distinguishing these benign areas from disease implications does not always occur to practitioners accustomed to costly molecular profiling methods such as FISH, aCGH, and NGS. As technology-driven approaches like FISH and aCGH have yet to achieve the promise of universal coverage or cost efficacy to sample investigated, deep chromosome analysis and molecular cytogenetics remains relevant for technology translation, study design, and therapeutic assessment. Knowledge of the rare but recurrent rearrangements unfamiliar to practitioners saves time and money for molecular cytogeneticists and genetics counselors, helping to distinguish benign from harmful CG-CNV. It also supports them in deciding which molecular cytogenetics tools to deploy. Shows how to define the inheritance and formation of cytogenetically visible copy number variations using cytogenetic and molecular approaches for genetic diagnostics, patient counseling, and treatment plan development Uniquely classifies all known variants by chromosomal origin, saving time and money for researchers in reviewing benign and pathologic variants before costly molecular methods are used to investigate Side-by-side comparison of copy number variants with their recently identified submicroscopic form, aiding technology assessment using aCGH and other techniques
The images in this textbook are in color. There is a less-expensive non-color version available - search for ISBN 9781680922202. Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology.
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.
This book presents the latest advances concerning the regulation of chromosome segregation during cell division by means of centromeres and kinetochores. The authors cover both state-of-the-art techniques and a range of species and model systems, shedding new light on the molecular mechanisms controlling the transmission of genetic material between cell divisions and from parent to offspring. The chapters cover five major areas related to the current study of centromeres and kinetochores: 1) their genetic and epigenetic features, 2) key breakthroughs at the molecular, proteomic, imaging and biochemical level, 3) the constitutive centromere proteins, 4) the role of centromere proteins in the physical process of chromosome segregation and its careful orchestration through elaborate regulation, and 5) intersections with reproductive biology, human health and disease, as well as chromosome evolution. The book offers an informative and provocative guide for newcomers as well as those already acquainted with the field.
"Cancer research is at a crossroads. Traditionally, cancer has been thought of as a disease of gene mutation, where the stepwise accumulation of cancer gene mutations is the key, and the identification of common gene mutations has been considered to be essential for diagnosis and treatment. Despite extensive research efforts and accumulated knowledge on cancer genes and pathways, the clinical benefits of this traditional approach have been limited. Recently, cancer genome sequencing has revealed an extensive amount of genetic heterogeneity where the long-expected common mutation drivers have been difficult, if not impossible, to identify. These realities ultimately challenge the conceptual framework of current cancer biology. This book introduces a new concept of genome theory of cancer evolution, in an attempt to unify the field. Many important and representative, but often confusing, questions and paradoxes are critically analyzed. By comparing gene- and genome-based theories, the hidden flaws of many popular viewpoints are addressed. This discussion is intended to initiate a much-needed critical re-evaluation of current cancer research."--