Download Free Chirality In Transition Metal Chemistry Book in PDF and EPUB Free Download. You can read online Chirality In Transition Metal Chemistry and write the review.

'Chirality in Transition Metal Chemistry' is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry.
Chirality in Transition Metal Chemistry is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry. Emphasising applications and real-world examples, the book begins with an overview of chirality, with a discussion of absolute configurations and system descriptors, physical properties of enantiomers, and principles of resolution and preparation of enantiomers. The subsequent chapters deal with the the specifics of chirality as it applies to transition metals. Some reviews of Chirality in Transition Metal Chemistry "...useful to students taking an advanced undergraduate course and particularly to postgraduates and academics undertaking research in the areas of chiral inorganic supramolecular complexes and materials." Chemistry World, August 2009 “...the book offers an extremely exciting new addition to the study of inorganic chemistry, and should be compulsory reading for students entering their final year of undergraduate studies or starting a Ph.D. in structural inorganic chemistry.” Applied Organometallic Chemistry Volume 23, Issue 5, May 2009 “...In conclusion the book gives a wonderful overview of the topic. It is helpful for anyone entering the field through systematic and detailed introduction of basic information. It was time to publish a new and topical text book covering the important aspect of coordination chemistry. It builds bridges between Inorganic, organic and supramolecular chemistry. I can recommend the book to everybody who is interested in the chemistry of chiral coordination compounds .” Angew. chem. Volume 48, Issue 18, April 2009 About the Series Chirality in Transition Metal Chemistry is the latest addition to the Wiley Inorganic Chemistry Advanced Textbook series. This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.
The book is dedicated to the work and achievements of Howard Flack. It combines articles which describe his own work and the advances he made in the field of crystallography, with original research articles which focus on aspects related to Howard Flack's interests.
Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.
Perspectives in Supramolecular Chemistry will relate recent developments and new exciting approaches in supramolecular chemistry. In supramolecular chemistry, our aim is to understand molecular chemistry beyond the covalent bond - the series will concentrate on goal-orientated supramolecular chemistry. Perspectives in Supramolecular Chemistry will reflect research which develops supramolecular structures with specific new properties, such as recognition, transport and simulation of biosystems or new materials. The series will cover all areas from theoretical and modelling aspects through organic and inorganic chemistry and biochemistry to materials, solid-state and polymer sciences reflecting the many and varied applications of supramolecular structures in modern chemistry. Transition Metals in Supramolecular Chemistry Edited by Jean-Pierre Sauvage, Université Louis Pasteur, Strasbourg, France The chemistry of weak forces and non-covalent interactions as pioneered by Pedersen, Lehn and Cram is considered to be the origin of modern supramolecular chemistry. 30 years ago transition metals and their complexes were not regarded as important to this science. Transition Metals in Supramolecular Chemistry clearly demonstrates that today, transition metal complexes are routinely used to build large multicomponent architectures which display new and exciting applications including molecular switches, liquid crystals, and molecular magnets. Contents * Ligand and Metal Control of Self-Assembly in Supramolecular Chemistry * Bistability in Iron (II) Spin-Crossover Systems: A Supramolecular Function * Luminescent Sensors with and for Transition Metals * The Chirality of Polynuclear Transition Metal Complexes * Design and Serendipity in the Synthesis of Polynuclear Compounds of the 3d-metals * Rotaxanes: From Random to Transition Metal-Templated Threading of Rings at the Molecular Level * Metallomesogens - Supramolecular Organisation of Metal Complexes in Fluid Phases * Self-Assembly of Interlocked Structures with Cucurbituril Metal Ions and Metal Complexes Reflecting contemporary science, Transition Metals in Supramolecular Chemistry will inspire scientists and students interested in coordination chemistry, magnetochemistry, molecular sensors and switches, liquid crystals and artificial systems.
Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. Research in organometallic chemistry is also conducted in the areas of cluster synthesis, main-group derivatives in unusual oxidation states, organometallic polymers, unstable organometallic compounds and intermediates in matrices, structure determination of organometallic compounds in the solid state [X-ray diffraction] and gaseous states [electron diffraction], and mechanisms of reactions of transient silylenes and related species. In addition to the traditional metals and semimetals, elements such as selenium, lithium and magnesium are considered to form organometallic compounds, e.g. organomagnesium compounds MeMgI, iodo(methyl)magnesium and diethylmagnesium which are Grignard reagents an organo-lithium compound BuLi butyllithium; Organometallic compounds often find practical use as catalysts, the processing of petroleum products and the production of organic polymers.
The phenomenon of chirality occurs in many disciplines of natural sciences, such as elementary particle physics, chemistry of molecules, biopolymers and crystals, pharmacology, biology (snails, winding plants), and medicine (handedness). Review articles are widely available for most of these fields and written for the respective experts. This book gives for the first time an interdisciplinary comprehensive treatment of chirality. Ten well-known scientists describe the present state of the art in different fields in introductory review articles without going into detail. Most importantly, the book is more than an accumulation of different chapters insofar as biomolecular homochirality is traced back to the chirality of elementary particles in atomic nuclei. The authors have attempted to present chemistry for physicists and physics for chemists, etc. Any scientist who is engaged in chirality may benefit from the present survey.
Early History of the Recognition of Molecular Biochirality, by Joseph Gal, Pedro Cintas Synthesis and Chirality of Amino Acids Under Interstellar Conditions, by Chaitanya Giri, Fred Goesmann, Cornelia Meinert, Amanda C. Evans, Uwe J. Meierhenrich Chemical and Physical Models for the Emergence of Biological Homochirality, by son E. Hein, Dragos Gherase, Donna G. Blackmond Biomolecules at Interfaces: Chiral, Naturally, by Arántzazu González-Campo and David B. Amabilino Stochastic Mirror Symmetry Breaking: Theoretical Models and Simulation of Experiments, by Celia Blanco, David Hochberg Self-Assembly of Dendritic Dipeptides as a Model of Chiral Selection in Primitive Biological Systems, by Brad M. Rosen, Cécile Roche, Virgil Percec Chirality and Protein Biosynthesis, by Sindrila Dutta Banik, Nilashis Nandi
Although many books exist on the subject of chiral chemistry, they only briefly cover chiral synthesis and analysis as a minor part of a larger work, to date there are none that pull together the background information and latest advances in one comprehensive reference work. Comprehensive Chirality provides a complete overview of the field, and includes chiral research relevant to synthesis, analytic chemistry, catalysis, and pharmaceuticals. The individual chapters in each of the 9 volumes provide an in depth review and collection of references on definition, technology, applications and a guide/links to the related literature. Whether in an Academic or Corporate setting, these chapters will form an invaluable resource for advanced students/researchers new to an area and those who need further background or answers to a particular problem, particularly in the development of drugs. Chirality research today is a central theme in chemistry and biology and is growing in importance across a number of disciplinary boundaries. These studies do not always share a unique identifying factor or subject themselves to clear and concise definitions. This work unites the different areas of research and allows anyone working or researching in chiral chemistry to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding. The field of chirality counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Chirality fills this vacuum, and can be considered the definitive work. It will help users apply context to the diverse journal literature offering and aid them in identifying areas for further research and/or for solving problems. Chief Editors, Hisashi Yamamoto (University of Chicago) and Erick Carreira (ETH Zürich) have assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource.
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973