Download Free Chirality From Dynamic Kinetic Resolution Book in PDF and EPUB Free Download. You can read online Chirality From Dynamic Kinetic Resolution and write the review.

The last 15 years have witnessed significant developments in the efficiency and scope of the application of DKR. These now offer a serious alternative to conventional methods for asymmetric synthesis. Indeed, impressive examples using new enzymes and major progress in the DKR of racemates have taken place over the past few years. The powerful combination of enzymes and metals has also been the subject of spectacular development. In addition, a new type of DKR, involving organocatalysts, has recently appeared. Although asymmetric catalysis has undergone development during the last two decades, the most common industrial process used to obtain enantiomerically pure compounds is still via resolution of racemic mixtures. This is despite the major disadvantage that only a maximum of 50% product yield can be obtained. It is not surprising that DKR, which solves the problem of the limitation in yield, has attracted an increasing amount of interest from both the industrial and the academic perspective. This book provides an up-date on the principle methods employed to obtain dynamic kinetic resolution (DKR) by either enzymatic or non-enzymatic methods. It also illustrates the diversity of useful chiral products that can be obtained through this powerful concept. Divided into three sections, the book deals successively with non-enzymatic methods, enzymatic methods, and the use of transition metals and enzymes in tandem.
A comprehensive overview of fundamental concepts of asymmetric synthesis along with in-depth discussion. Recent developments that address important synthetic challenges are presented and highlighted with hundreds of examples.
Axially Chiral Compounds Explore this comprehensive and current volume summarizing the characteristics, synthesis, and applications of axial chirality Appearing widely in natural products, biologically active molecules, asymmetric chemistry, and material science, axially chiral motifs constitute the core backbones of the majority of chiral ligands and organocatalysts in asymmetric catalysis. In a new work of particular relevance to synthetic chemists, Axially Chiral Compounds: Asymmetric Synthesis and Applications delivers a clearly structured and authoritative volume covering the classification, characteristics, synthesis, and applications of axial chirality. A must read for every synthetic chemist practicing today, the book follows the development history, research status, and applications of axial chirality. An introductory chapter familiarizes the reader with foundational material before the distinguished authors describe the different classes and the synthesis of axial chiral compounds used in asymmetric synthesis. The book concludes with a focus on the applications of chiral ligands, chiral catalysts, and materials. Readers will also benefit from the inclusion of: A thorough introduction to asymmetric synthesis, including biaryls atropisomers, heterobiaryls atropisomers, and non-biaryls atropisomers Explorations of chiral allene, spiro skeletons, and natural products Practical discussions of asymmetric transformation, chiral ligands, and chiral catalysts An examination of miscellaneous applications of axially chiral compounds Perfect for organic chemists, chemists working with or on organometallics, catalytic chemists, and materials scientists, Axially Chiral Compounds: Asymmetric Synthesis and Applications will also earn a place in the libraries of natural products chemists who seek a one-stop reference for compounds exhibiting axial chirality.
This book is a hands-on guide for the organic chemist. Focusing on the most reliable and useful reactions, the chapter authors provide the information necessary for a chemist to strategically plan a synthesis, as well as repeat the procedures in the laboratory. Consolidates all the key advances/concepts in one book, covering the most important reactions in organic chemistry, including substitutions, additions, eliminations, rearrangements, oxidations, reductions Highlights the most important reactions, addressing basic principles, advantages/disadvantages of the methodology, mechanism, and techniques for achieving laboratory success Features new content on recent advances in CH activation, photoredox and electrochemistry, continuous chemistry, and application of biocatalysis in synthesis Revamps chapters to include new and additional examples of chemistry that have been demonstrated at a practical scale
Collecting for the first time all the developments in the field of DKR, this book shows that a variety of organocatalysts allow excellent levels of stereocontrol and yields in many types of transformations.
In spite of important advances in asymmetric synthesis, chiral compounds cannot all be obtained in a pure state by asymmetric synthesis. As a result, enantiomer separation remains an important technique for obtaining optically active materials. Although asymmetric synthesis is a once-only procedure, an enantiomer separation process can be repeated until the optically pure sample is obtained. This book discusses several new enantiomer separation methods using modern techniques developed by experts in the field. These methods consist mainly of the following three types: 1) Enantiomer separation by inclusion complexation with a chiral host compound 2) Enantiomer separation using biological methods 3) Enantiomer separation by HPLC chromatography using a column containing a chiral stationary phase. Separation of a racemic compound has been called “optical resolution” or simply “resolution”. Nowadays, the descriptions “enantiomer resolution” or “enantiomer separation” are also commonly used. Accordingly, “Enantiomer Separation” is used in the title of this book. The editor and all chapter contributors hope that this book is helpful for scientists and engineers working in this field.
This expansive and practical textbook contains organic chemistry experiments for teaching in the laboratory at the undergraduate level covering a range of functional group transformations and key organic reactions.The editorial team have collected contributions from around the world and standardized them for publication. Each experiment will explore a modern chemistry scenario, such as: sustainable chemistry; application in the pharmaceutical industry; catalysis and material sciences, to name a few. All the experiments will be complemented with a set of questions to challenge the students and a section for the instructors, concerning the results obtained and advice on getting the best outcome from the experiment. A section covering practical aspects with tips and advice for the instructors, together with the results obtained in the laboratory by students, has been compiled for each experiment. Targeted at professors and lecturers in chemistry, this useful text will provide up to date experiments putting the science into context for the students.
This work describes the essential aspects of enantioselective catalysis, with chapters organised by concept rather than by reaction type. Each concept is supported by examples to give the reader broad exposure to a wide range of catalysts, reactions and reaction mechanisms.
From reviews to the first edtion: "Bornscheuer and Kazlauskas have set out, and succeeded, in producing a definitive manual on hydrolytic enzymes (especially lipases, esterases, and proteases) for organic chemists. This is quite simply the best book of its type and can be unreservedly recommended to organic chemists who have an interest in using hydrolytic enzymes in synthesis." (Nicholas J. Turner, University of Edinburgh) "The book is an indispensable source of information on the use of hydrolases in organic synthesis. The subject matter is very well set out, and the chapters are clearly written and presented from a critical viewpoint. Bornscheuer and Kazlauskas have succeeded admirably in describing the capabilities and limitations of the use of hydrolytic enzymes and in critically evaluating them. No library should be without the book." (Fritz Theil, WITEGA Angewandte Werkstoff-Forschung GmbH, Berlin) The second edition of this extremely successful and well-proven book presents recent developments in the use of hydrolases for organic synthesis, reflecting in particular the enormous progress made in enzyme discovery and optimization with a new chapter on "Protein Sources and Optimization of Biocatalyst Performance". The renowned authors survey the stereoselective reactions of hydrolases, especially lipases, esterases and proteases, giving researchers an overview of what has worked in the past so that they can judge how to solve their own synthetic problems. In total, the book contains over one thousand chemical structures, rounded off by some 1,800 invaluable references.
An integrated view of chiral drugs from concept and synthesisto pharmaceutical properties Chirality greatly influences a drug's biological and pharmacological properties. In an effort to achieve more predictable results from chiral drugs, the Food and Drug Administration now requires that these medicines be as pure as possible, which places great demands on drug synthesis, purification, analysis, and testing. To assist researchers in acquiring the essential knowledge to meet these rigid guidelines, Chiral Drugs focuses on three vital chiral technologies asymmetric synthesis, biocatalytic process, and chiral resolution to offer details on the basic concepts, key developments, and recent trends in chiral drug discovery, along with: The history of chiral drugs development and industrial applications of chiral technologies A section listing twenty-five approved or advanced-trial chiral drugs that lists each drug name, chemical name and properties, a representative synthetic pathway, pharmacological characterizations, and references An interdisciplinary approach combining synthetic organic chemistry, medicinal chemistry, and pharmacology Nearly two-thirds of the drugs on today's market are chiral drugs. Reducing and eliminating their negative characteristics is an ongoing and serious challenge for the pharmaceutical industry. With its well-balanced approach to covering each important aspect of chirality, Chiral Drugs champions important strategies for tipping the medical scale in a positive direction for the production of more effective and safer drugs.