Download Free Chern Simons Supergravity Book in PDF and EPUB Free Download. You can read online Chern Simons Supergravity and write the review.

'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry … The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.
Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.
Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.
This book summarizes major advances in critical solitons in supersymmetric theories, and their implications for understanding basic dynamical regularities of nonsupersymmetric theories. After an extended introduction on the theory of critical solitons, including a historical introduction, the authors focus on three topics: non-Abelian strings and confined monopoles; reducing the level of supersymmetry; and domain walls as D brane prototypes. They also provide a thorough review of issues at the cutting edge, such as non-Abelian flux tubes. The book presents an extensive summary of the current literature so researchers in this field can understand the background and related issues.
This book provides a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity for graduate students.
The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.
Inspired by exciting developments in superstring theory, this is a pedagogical and comprehensive introduction to the harmonic superspace method in extended supersymmetry. The authors (credited with inventing the technique) are recognised as world experts on the subject and present a clear account of its formalism and applications.
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.
In the course of the development of electromagnetic, weak and strong interactions, the concept of (internal) gauge invariance grew up and established itself as an unavoidable dynamical principle in particle physics. It is less known that the principle of equivalence, and the basic dynamical properties of the gravitational interaction can also be ex
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics.All these issues were discussed at a recent international workshop in Singapore where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories including its historic background, as well as the latest accomplishments in understanding the foundational properties of higher spin physics.