Download Free Chemistry Of The Rarer Elements Book in PDF and EPUB Free Download. You can read online Chemistry Of The Rarer Elements and write the review.

This work introduces into the chemistry, materials science and technology of Rare Earth Elements. The chapters by experienced lecturers describe comprehensively the recent studies of their characteristics, properties and applications in functional materials. Due to the broad range of covered topics as hydrogen storage materials, LEDs or permanent magnets this work gives an up-to-date presentation of this fascinating research.
The Handbook of Rare Earth Elements focuses on the essential role of modern instrumental analytics in the recycling, purification and analysis of rare earth elements. Due to their numerous applications, e.g. in novel magnetic materials for computer hardware, mobile phones and displays, rare earth elements have become a strategic and valuable resource. The detailed knowledge of rare earth element contents at every step of their life cycle is of great importance. This reference work was compiled with contribution from an international team of expert authors from Academia and Industry to presend a comprehensive discussion on the state-of-the-art of rare earth element analysis for industrial and scientific purposes, recycling processes and purification of REEs from various sources. Written with Analytical Chemists, Inorganic Chemists, Spectroscopists as well as Industry Practitioners in mind, the Handbook of Rare Earth Elements is an indispensable reference for everyone working with rare earth elements.
Developments in Geochemistry, Volume 2: Rare Earth Element Geochemistry presents the remarkable developments in the chemistry and geochemistry of the rare earth elements. This book discusses the analytical techniques and the recognition that rare earth fractionation occurs naturally in different ways. Organized into 13 chapters, this volume begins with an overview of the wide array of types and sizes of the cation coordination polyhedral in rock-forming minerals. This text then examines the application of rare earth element abundances to petrogenetic problems that has centered on the evolution of igneous rocks. Other chapters consider the matching of observed rare earth element abundances with those provided by the theoretical modeling of petrogenetic processes. This book discusses as well the hypotheses on the genesis of a rock or mineral suite. The final chapter deals with the principal analytical methods. This book is a valuable resource for undergraduates, lecturers, and researchers who study petrology and geochemistry.
Corrosion inhibitors are an important method for minimizing corrosion; however traditional inhibitors such as chromates pose environmental problems. Rare earth metals provide an important, environmentally-friendly alternative. This book provides a comprehensive review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction. Chapter 1 begins by examining the important need to replace chromate, and then goes on to discuss the chemistry of the rare earth metals and their related compounds. Chapter 2 considers the techniques that can be used to identify corrosion inhibition mechanisms and to test the levels of protection offered to different metals by rare earth compounds. Subsequent chapters consider in more detail how rare earth elements can be used as corrosion inhibitors in different forms and for different metals. This includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings. Finally, chapter 10 considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them. - Provides a review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction - Includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings - Considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them
In order to use rare earths successfully in various applications, a good understanding of the chemistry of these elements is of paramount importance. Nearly three to four decades have passed since titles such as The Rare Earths edited by F.H. Spedding and A.H. Daane, The chemistry of the Rare Earth Elements by N.E. Topp and Complexes of the Rare Earths by S.P. Sinha were published. There have been many international conferences and symposia on rare earths, as well as the series of volumes entitled Handbook of Physics and Chemistry of Rare Earths edited by K.A. Gschneidner and L. Eyring. Thus, there is a need for a new title covering modern aspects of rare earth complexes along with the applications. The present title consists of twelve chapters. 1. Introduction2. General aspects3. Stability of complexes4. Lanthanide complexes5. Structural chemistry of lanthanide compounds6. Organometallic complexes7. Kinetics and mechanisms of rare earths complexation8. Spectroscopy of lanthanide complexes9. Photoelectron spectroscopy of rare earths10. Lanthanide NMR shift reagents11. Environmental ecological biological aspects12. Applications The authors studied in schools headed by pioneers in rare earth chemistry, have a combined experience of one hundred and fifty years in inorganic chemistry, rare earth complex chemistry, nuclear and radiochemistry of rare earths and supramolecular chemistry. The present monograph is a product of this rich experience.
This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.