Download Free Chemistry Of Protein Conjugation And Cross Linking Book in PDF and EPUB Free Download. You can read online Chemistry Of Protein Conjugation And Cross Linking and write the review.

Chemical cross-linking reagents have attained great practical use in industry as well as in basic research, and an understanding of their fundamental principles of reaction is paramount to their applications. With broad coverage of the development and application of these reagents, Chemistry of Protein Conjugation and Cross-Linking discusses the mechanism of reaction and allows you to put the theory into practice. The book offers an explanation of the underlying mechanism of chemical modification, surveys all the bifunctional reagents used in bioconjugation and cross-linking, and provides a review of practical applications of these reagents in various areas of biochemistry, molecular biology, biotechnology, nucleic acid chemistry, immunochemistry, and diagnostic and biomedical disciplines. It contains numerous examples and illustrations, plus step-by-step explanations to reaction procedures. It is an excellent introduction and a comprehensive reference about chemical modification.
Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions
Proceedings of an ACS-PMSE Division Symposium held in Orlando, Florida, August 21-25, 1996
This unique reference provides a pragmatic approach to the development of successful commercial immunodiagnostic products based on enzyme immunoessay technology. Presenting both the basic and applied principles, Enzyme Immunoassays gathers information on all aspects of this process, from the initial conceptualization to the introduction of the product to the market.
The second edition of Structure in Protein Chemistry showcases the latest developments and innovations in the field of protein structure analysis and prediction. The book begins by explaining how proteins are purified and describes methods for elucidating their sequences of amino acids and defining their posttranslational modifications. Comprehensive explanations of crystallography and of noncovalent forces-ionic interactions, hydrogen bonding, and the hydrophobic effect-act as a prelude to an exhaustive description of the atomic details of the structures of proteins. The resulting understanding of protein molecular structure forms the basis for discussions of the evolution of proteins, the symmetry of the oligomeric associations that produce them, and the chemical, mathematical, and physical basis of the techniques used to study their structures. The latter include image reconstruction, nuclear magnetic resonance spectroscopy, proton exchange, optical spectroscopy, electrophoresis, covalent cross-linking, chemical modification, immunochemistry, hydrodynamics, and the scattering of light, X-radiation, and neutrons. These procedures are applied to study the folding of polypeptides and the assembly of oligomers. Biological membranes and their proteins are also discussed. Structure in Protein Chemistry, Second Edition, bridges the gap between introductory biophysical chemistry courses and research literature. It serves as a comprehensive textbook for advanced undergraduates and graduate students in biochemistry, biophysics, and structural and molecular biology. Professionals engaged in chemical, biochemical, and molecular biological research will find it a useful reference.
Since the publication of the first edition of Chemistry of Protein Conjugation and Cross-Linking in 1991, new cross-linking reagents, notably multifunctional cross-linkers, have been developed and synthesized. The completion of the human genome project has opened a new area for studying nucleic acid and protein interactions using nucleic acid cross
Presenting a wide array of information on chemical ligation – one of the more powerful tools for protein and peptide synthesis – this book helps readers understand key methodologies and applications that protein therapeutic synthesis, drug discovery, and molecular imaging. • Moves from fundamental to applied aspects, so that novice readers can follow the entire book and apply these reactions in the lab • Presents a wide array of information on chemical ligation reactions, otherwise scattered across the literature, into one source • Features comprehensive and multidisciplinary coverage that goes from basics to advanced topics • Helps researchers choose the right chemical ligation technique for their needs
Explores bioconjugate properties and applications of polymers, dendrimers, lipids, nanoparticles, and nanotubes Bioconjugation has enabled breakthroughs across many areas of industry and biomedicine. With its emphasis on synthesis, properties and applications, this book enables readers to understand the connection between chemistry and the biological application of bioconjugated materials. Its detailed descriptions of methods make it possible for researchers to fabricate and take full advantage of bioconjugates for a broad range of applications. Moreover, the book sets the foundation for the development of new applications, including assays, imaging, biosensors, drug delivery, and diagnostics. Chemistry of Bioconjugates features contributions from an international team of leading experts and pioneers in the field. These contributions reflect the authors’ firsthand laboratory experience as well as a thorough review of the current literature. The book’s six sections examine: General methods of bioconjugation Polymer bioconjugates Organic nanoparticle-based bioconjugates Inorganic nanomaterial bioconjugates, including metals and metal oxides Cell-based, hydrogel/microgel, and glyco-bioconjugates Characterization, physico-(bio)chemical properties, and applications of bioconjugates This comprehensive exploration of bioconjugates includes discussions of polymers, dendrimers, lipids, nanoparticles, and nanotubes. References at the end of each chapter serve as a gateway to the most important original research findings and reviews in the field. By drawing together and analyzing all the latest chemical methods and research findings on the physico-chemical and biochemical properties of bioconjugates, Chemistry of Bioconjugates sheds new light on the significance and potential of bioconjugation. The book is recommended for organic and polymer chemists, biochemists, biomaterial scientists, carbohydrate chemists, biophysicists, bioengineers, and drug and gene delivery scientists.
Post-Translational Modifications of Proteins discusses several important topics of interest to researchers and students in protein chemistry and biochemistry, including the occurrence and function of hydroxylated residues and the three enzymes required for their formation; the damaging effects of reactions between sugars and proteins; ADP-riboosylation of proteins outside the nucleus; and Monod, Wyman, and Changeux's concerted model for allosteric control of enzyme activity exemplified by studies on glycogen phosphorylase. The application of Fast Atom Bombardment Mass Spectometry (FAB-MS) to studies on the structure and biosynthesis of various oligosaccharide moieties in protein is examined, and the understanding of the structural diversity and function of glycoprotein oligosaccharides is discussed in this volume.