Download Free Chemistry And Therapeutics Of Synthetic Drugs Etc Book in PDF and EPUB Free Download. You can read online Chemistry And Therapeutics Of Synthetic Drugs Etc and write the review.

Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
This book illustrates, in a comprehensive manner, the most crucial principles involved in pharmacology and allied sciences. The title begins by discussing the historical aspects of drug discovery, with up to date knowledge on Nobel Laureates in pharmacology and their significant discoveries. It then examines the general pharmacological principles - pharmacokinetics and pharmacodynamics, with in-depth information on drug transporters and interactions. In the remaining chapters, the book covers a definitive collection of topics containing essential information on the basic principles of pharmacology and how they are employed for the treatment of diseases. Readers will learn about special topics in pharmacology that are hard to find elsewhere, including issues related to environmental toxicology and the latest information on drug poisoning and treatment, analytical toxicology, toxicovigilance, and the use of molecular biology techniques in pharmacology. The book offers a valuable resource for researchers in the fields of pharmacology and toxicology, as well as students pursuing a degree in or with an interest in pharmacology.
In light of the recent emergence of Novel Psychoactive Substances (NPS) on a global scale, this book provides a timely analysis of the social and economic impact of the NPS phenomenon, and of the global policy and regulatory responses to it. It presents the first comprehensive overview of the international regulation, policy and market structure of the NPS phenomenon, offering a guide to inform legislative discussions and demonstrating from a comparative perspective the different approaches used to address the rise of NPS to date. It covers topics such as organized crime, drug markets, clinical evidence on NPS, and different regulatory approaches also in less explored settings such as prisons and sport environments. Overall, this highly informative and well-structured repository of different experiences with NPS policy, law and regulation offers an essential primary source of evidence for anyone interested in the area of drug and NPS policy, health economics and p ublic health.
The long-awaited volume on synthetic chemistry in the series "Methods and Principles in Medicinal Chemistry" is now available. In the pharmaceutical industry, computational methods play a major role in the discovery and development of new drugs. Yet, the SYNTHESIS of these compounds still remains the most crucial topic in drug design. Written by an internationally renowned team of authors and editors from academia and industry, this volume describes all recent developments in organic synthetic methodology which are essential for pharmaceutical research. The most modern synthetic developments of pharmacologically interesting compounds (carbohydrates and nucleotides) as well as important synthetic methods such as combinatorial chemistry, solid-phase reactions, bioassisted organic synthesis and asymmetric synthesis are critically discussed. Special emphasis is given to a hands-on practical approach which enables researchers to apply the featured methods immediately to their specific problems. Also, the detailed presentation of the topic and the selection of references will be of help to any researcher working in the laboratory.
Synthesis of Medicinal Agents from Plants highlights the importance of synthesizing medicinal agents from plants and outlines methods for performing it effectively. Beginning with an introduction to the significance of medicinal plants, the book goes on to provide a historical overview of drug synthesis before exploring how this can be used to successfully replicate and adapt the active agents from natural sources. Chapters then explore the medicinal properties of a number of important plants, before concluding with a discussion of the future of drugs from medicinal plants. Illustrated with real-world examples, it is a practical resource for researchers in this field. In an age of rapid environmental destruction, hundreds of medicinal plants are at risk of extinction from overexploitation and deforestation, limiting the natural resources available for active agent extraction, thereby threatening the discovery of future cures for diseases. Simultaneously, with the increasing population and advances in medical sciences, the demand for drugs is continuously increasing and cannot be met with just plants. The ability to synthetically replicate the active compounds from these plants is essential in creating an ecologically-aware, sustainable future for drug design - Includes detailed coverage of therapeutic compound synthesis - Uses multiple real-world examples to support content - Lays out a sustainable template for the future of developing active agents from natural products
Ayurvedic Medicine, or Ayurveda, is a traditional Indian health care system. Research into the medicinal plants utilised in Ayurveda is becoming a global endeavour, and large pharmaceutical companies are investing in novel drug discovery from Ayurvedic sources as a number of clinical studies have demonstrated efficacy of natural products from Ayurvedic plant extracts against common ailments such as arthritis and diabetes. Ayurvedic medicine and its components have been well described in the past, but this book represents a comprehensive source on the biochemistry and mechanisms of the pharmacological effects of natural products from Ayurvedic sources. This book is a valuable resource for researchers in natural products and alternative sources of bioactive compounds in drug discovery, as well as pharmaceutical experts and those in industry.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
Natural Product Chemistry for Drug Discovery provides a comprehensive summary of where natural product chemistry is today in drug discovery. The book covers emerging technologies and case studies and is a source of up-to-date information on the topical subject of natural products. Natural products are once again considered important tools in the drug discovery toolbox. The authors are all experts in their respective fields of natural product chemistry. The book will appeal across the board from scientists to professionals, postgraduates and industrial chemists. The case studies selected for inclusion highlight recently marketed drugs and development candidates that have been derived from natural products. These 'real-life' examples show how new technologies, such as advances in screening, isolation, dereplication and prefractionation, have significantly enhanced the discovery process.