Download Free Chemical Vapor Deposition Growth And Characterization Of Two Dimensional Hexagonal Boron Nitride Book in PDF and EPUB Free Download. You can read online Chemical Vapor Deposition Growth And Characterization Of Two Dimensional Hexagonal Boron Nitride and write the review.

This thesis focuses on the growth of a new type of two-dimensional (2D) material known as hexagonal boron nitride (h-BN) using chemical vapor deposition (CVD). It also presents several significant breakthroughs in the authors’ understanding of the growth mechanism and development of new growth techniques, which are now well known in the field. Of particular importance is the pioneering work showing experimental proof that 2D crystals of h-BN can indeed be hexagonal in shape. This came as a major surprise to many working in the 2D field, as it had been generally assumed that hexagonal-shaped h-BN was impossible due to energy dynamics. Beyond growth, the thesis also reports on synthesis techniques that are geared toward commercial applications. Large-area aligned growth and up to an eightfold reduction in the cost of h-BN production are demonstrated. At present, all other 2D materials generally use h-BN as their dielectric layer and for encapsulation. As such, this thesis lays the cornerstone for using CVD 2D h-BN for this purpose.
Hexagonal Boron Nitride: Synthesis, Properties, and Applications offers a comprehensive approach to hexagonal boron nitride (h-BN), covering synthesis, exfoliation, properties, characterization, functionalization, heterostructures, nanocomposites, and modelling and simulation, and guiding the reader towards advanced applications in biomedicine, electronics, energy storage, wastewater treatment, and other areas.The book begins by introducing hexagonal boron nitride, discussing classification, structure, synthesis methods, exfoliation, and functionalization techniques. This is followed by in-depth coverage of properties and characterization, as well as heterostructures and other two-dimensional materials, as well as nanocomposites. The fourth section of the book examines specific target applications, covering a range of cutting-edge areas including micro- and nano-electronics, anti-friction and anti-corrosive coatings, bone tissue engineering, wound healing, nanomedicine, drug delivery, catalysis, water treatment, energy storage and conversion, sensing and bio-sensing, and fire-retardant applications. Finally, computational modelling and simulation, and environmental aspects, are addressed in detail.This is a valuable resource for researchers and advanced students across nanotechnology, materials science, chemistry, environmental science, chemical engineering, biomedicine, electronics, and engineering. In an industrial setting, this book supports scientists, engineers, and R&D professionals with an interest in advanced 2D materials or nanomaterials for advanced applications. Presents the synthesis, properties, functionalization, and characterization methods for hexagonal boron nitride Explores novel applications across biomedicine, electronics, energy storage, and water treatment Addresses key challenges, such as biocompatibility, toxicity, and environmental and health impact
Two dimensional materials have unique properties that are anisotropic in-plane and out-of-plane. They further exhibit unique properties when they are thinned down to an isolated monolayer or a few layers. These properties have the potential to greatly impact applications in energy, computing, construction, medicine, and other industries. Many researchers have published many reports working with two dimensional (2D) materials. This dissertation describes work which has contributed to the body of research around 2D materials synthesis, characterization, and device applications primarily with graphene and hexagonal boron nitride. Graphene is a hexagonal lattice of carbon atoms which is stable in ambient down to a single monolayer. Hexagonal boron nitride is an isomorph of graphene but with boron and nitrogen atoms on the lattice instead of carbon. Chemical vapor deposition (CVD) synthesis processes have shown to be replicable and capable for obtaining 2D materials of high quality, and experimenting with process conditions has improved the understanding about the synthesis mechanisms occurring. The objective of my 2D materials synthesis work is, broadly, to better understand the mechanisms during growth for graphene and h-BN. The growth mechanism has multiple of forces acting on it, in competition, and many of them are detailed in chapter 2. Growing the body of research and knowledge about 2D materials requires us to have techniques to characterize these materials accurately and precisely. It is important to develop and demonstrate new characterization techniques which are tailored for 2D materials. In chapter 3, the research done in characterizing 2D materials and interfaces between hetero-layers will be presented. Devices which take advantage of the dimensionality and confinement within a layer of 2D material, or multiple materials, have shown high performance in a variety of applications. The range for 2D materials device applications is continually expanding and increasing in complexity. In chapter 4, research will be presented which returns to the relatively simple system of graphene to try and apply its many unique properties for a few different photovoltaic devices
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.
Two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (hBN) have attracted attention from both academia and industry owing to their unique atomically thin structure and associated properties. The goal of this dissertation is to provide fundamental insights of the growth kinetics, surface structure, and thermal stability of hBN and graphene layers grown via chemical vapor deposition (CVD) on metal substrates. Scanning tunneling microscopy (STM) was used to investigate the surface structure of hexagonal boron nitride (hBN) domains on Pd(111) grown via dissociative chemisorption of borazine on Pd(111)/Al2O3(0001) thin films. STM images acquired from the hBN/Pd(111) sample reveal moir patterns with different periodicities corresponding to rotational domains of hBN. Surface corrugations in each of the moir patterns were measured from the STM images as a function of the STM tunneling parameters. The corrugation amplitude z was found to depend on the tunneling bias and increases with increasing . The observed tunneling-parameter dependence in z were attributed to the electronic structure of the hBN/Pd(111) system. The domains with the largest , exhibit a bifurcation behavior in which some domains are nearly flat, and others develop "blisters", i.e., significant hills-and-valley geometric undulations. Hence, unlike any other monolayer hBN-on-metal system, hBN/Pd can have either mainly geometric or mainly electronic corrugation, depending on the domain orientation. The growth kinetics of hBN monolayers grown via CVD using borazine (B3N3H6) on Pd(111) were investigated using in situ variable-temperature STM. STM images were acquired during CVD of borazine on Pd(111) as a function of the substrate temperature T, the borazine partial pressure P, and time t. The STM images reveal a T and P dependent change in the growth mode: at higher P and lower T, (lower P and higher T), hBN nucleation occurs primarily on Pd step edges (Pd terraces). Furthermore, the mechanisms promoting growth across the step edges (as a carpet across steps) are identified. These results provide new insights into the nucleation and growth of hBN monolayers and potentially other 2D materials and related heterostructures on metal substrates. The thermal stability of hBN covered Pd(111) thin films was investigated using in situ variable-temperature STM. STM images were acquired from bare Pd(111) and hBN covered Pd(111) at temperatures between 600 K and 1000 K. It was found that the hBN overlayer enhances the stability of the underlying Pd surface by suppressing the surface mobility of adatoms. These results provide new, direct insights into the behavior of substrate supported 2D materials at elevated temperatures. Finally, in situ VT-STM was used to investigate the growth of graphene using benzene (C6H6) on Pd(111). STM images were acquired during and after benzene deposition at temperatures between 300 K and 1100 K. Compared to growth of graphene on Pd(111) using other hydrocarbon precursors (e.g. ethylene), benzene enables the growth of graphene at lower T, and at significantly lower doses, likely due to an increased probability of forming C6 and/or C6Hx(x
This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.
"Graphene is an allotrope of carbon in the form of a two-dimensional (2D) material with zero bandgap. Hexagonal boron nitride (hBN), also known as white graphite, is a wide bandgap 2D material that has found use as an insulating dielectric layer in ultra-high mobility graphene devices, 2D heterostructures and tunneling devices. In this thesis, we report the chemical vapor deposition (CVD) growth and characterization of graphene and monolayer hBN. The growth of graphene and hBN was performed separately in a tube furnace on Cu foils using methane (CH4) and an ammonia borane (NH3-BH3) precursor, respectively. Raman spectroscopy confirmed that the CVD grown graphene is a monolayer of high quality. We have fabricated graphene field effect transistors and characterized their electrical properties to demonstrate material quality. Additionally, the CVD grown graphene was incorporated in a diverse range of applications, including large area graphene ion sensitive field effect transistors, suspended graphene varactors and an investigation of the role of hydrogenation on the electronic and thermal properties of graphene. We employed a variety of techniques to characterize CVD grown hBN. The morphology of the as-grown film along with the optimization of growth conditions to yield high coverage of monolayer hBN was studied by scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the presence of boron and nitrogen in the CVD grown film as well as the expected stoichiometry. The electron diffraction pattern of suspended hBN films displayed a hexagonal crystal structure. A prominent Stokes Raman shift at 1369 cm-1 was observed in hBN transferred to Si/SiO2 substrates, revealing that our CVD grown hBN is of monolayer form. The optical properties of our hBN layers were probed by cathodoluminescence and UV-visible absorption spectroscopy. We report the first observation of in-plane charge transport in large area CVD grown monolayer hBN using a variety of electrode geometries. Ni electrodes were used to provide electrical contacts. We have observed a quadratic scaling of current with voltage at high bias corresponding to a space charge limited conduction mechanism, with a room temperature mobility reaching up to 0.01 cm2/Vs at electric fields up to 100 kV/cm in the absence of dielectric breakdown. The observation of in-plane charge transport highlights the semiconducting nature of monolayer hBN, and identifies hBN as a wide-gap 2D crystal capable of supporting charge transport at high field. Furthermore, we have examined the suitability of CVD grown monolayer hBN for inhibiting corrosion. Quantitative measurements of monolayer hBN as a Cu corrosion inhibitor were studied by use of cyclic voltammetry, Tafel analysis and electrochemical impedance spectroscopy. We have found that CVD grown monolayer hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.The final contribution of this thesis is the growth of hBN directly on Si/SiO2 substrate via CVD. The main focus of this work is to produce metal-free, large-area, continuous and uniform hBN dielectric films on Si-based substrates ready to incorporate into devices without any transfer processing. We have also examined the effect of carrier gas flow rate on the thickness and roughness of the grown film in atmospheric pressure CVD. We have succeeded to grow large area hBN films with the thickness of ~ 2 nm and rms roughness of 0.6 nm (over 1 μm2) directly on Si/SiO2 substrates via atmospheric pressure CVD." --
This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.
This text discusses the physical principles of how and why crystals grow. It introduces the fundamental properties of crystal surfaces at equilibrium, and describes simple models and basic concepts of crystal growth including diffusion, thermal smoothing of a surface, and applications to semiconductors. It also covers more complex topics such as kinetic roughness, growth instabilities, and elastic effects, as well as the crucial contributions of crystal growth in electronics during this century. The book focuses on growth using molecular beam epitaxy. Throughout, the emphasis is on the role played by modern statistical physics. Informative appendices, interesting exercises and an extensive bibliography reinforce the text.