Download Free Chemical Reactor Design And Control Book in PDF and EPUB Free Download. You can read online Chemical Reactor Design And Control and write the review.

Chemical Reactor Design and Control uses process simulators like Matlab®, Aspen Plus, and Aspen Dynamics to study the design of chemical reactors and their dynamic control. There are numerous books that focus on steady-state reactor design. There are no books that consider practical control systems for real industrial reactors. This unique reference addresses the simultaneous design and control of chemical reactors. After a discussion of reactor basics, it: Covers three types of classical reactors: continuous stirred tank (CSTR), batch, and tubular plug flow Emphasizes temperature control and the critical impact of steady-state design on the dynamics and stability of reactors Covers chemical reactors and control problems in a plantwide environment Incorporates numerous tables and shows step-by-step calculations with equations Discusses how to use process simulators to address diverse issues and types of operations This is a practical reference for chemical engineering professionals in the process industries, professionals who work with chemical reactors, and students in undergraduate and graduate reactor design, process control, and plant design courses.
Publisher description
This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.
A guide to the technical and calculation problems of chemical reactor analysis, scale-up, catalytic and biochemical reactor design Chemical Reactor Design offers a guide to the myriad aspects of reactor design including the use of numerical methods for solving engineering problems. The author - a noted expert on the topic - explores the use of transfer functions to study residence time distributions, convolution and deconvolution curves for reactor characterization, forced-unsteady-state-operation, scale-up of chemical reactors, industrial catalysis, design of multiphasic reactors, biochemical reactors design, as well as the design of multiphase gas-liquid-solid reactors. Chemical Reactor Design contains several examples of calculations and it gives special emphasis on the numerical solutions of differential equations by using the finite differences approximation, which offers the background information for understanding other more complex methods. The book is designed for the chemical engineering academic community and includes case studies on mathematical modeling by using of MatLab software. This important book: - Offers an up-to-date insight into the most important developments in the field of chemical, catalytic, and biochemical reactor engineering - Contains new aspects such as the use of numerical methods for solving engineering problems, transfer functions to study residence time distributions, and more - Includes illustrative case studies on MatLab approach, with emphasis on numerical solution of differential equations using the finite differences approximation Written for chemical engineers, mechanical engineers, chemists in industry, complex chemists, bioengineers, and process engineers, Chemical Reactor Design addresses the technical and calculation problems of chemical reactor analysis, scale-up, as well as catalytic and biochemical reactor design.
Mathematics in Science and Engineering, Volume 3: The Optimal Design of Chemical Reactors: A Study in Dynamic Programming covers some of the significant problems of chemical reactor engineering from a unified point of view. This book discusses the principle of optimality in its general baring on chemical processes. Organized into nine chapters, this volume begins with an overview of the whole range of optimal problems in chemical reactor design. This text then provides the fundamental equations for reactions and reactors. Other chapters consider the objective function needed to define a realistic optimal problem and explain separately the main types of chemical reactors and their associated problems. This book discusses as well the three problems with a stochastic element. The final chapter deals with the optimal operation of existing reactors that may be regarded as partial designs in which only some of the variables can be optimally chosen. This book is a valuable resource for chemical engineers.
Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. - Emphasis on reactor engineering in sustainable energy technology - Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics - Expert accounts of reactor types, processing, and optimization - Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
This is the Second Edition of the standard text on chemical reaction engineering, beginning with basic definitions and fundamental principles and continuing all the way to practical applications, emphasizing real-world aspects of industrial practice. The two main sections cover applied or engineering kinetics, reactor analysis and design. Includes updated coverage of computer modeling methods and many new worked examples. Most of the examples use real kinetic data from processes of industrial importance.