Download Free Chemical Process Technology Book in PDF and EPUB Free Download. You can read online Chemical Process Technology and write the review.

With a focus on actual industrial processes, e.g. the production of light alkenes, synthesis gas, fine chemicals, polyethene, it encourages the reader to think “out of the box” and invent and develop novel unit operations and processes. Reflecting today’s emphasis on sustainability, this edition contains new coverage of biomass as an alternative to fossil fuels, and process intensification. The second edition includes: New chapters on Process Intensification and Processes for the Conversion of Biomass Updated and expanded chapters throughout with 35% new material overall Text boxes containing case studies and examples from various different industries, e.g. synthesis loop designs, Sasol I Plant, Kaminsky catalysts, production of Ibuprofen, click chemistry, ammonia synthesis, fluid catalytic cracking Questions throughout to stimulate debate and keep students awake! Richly illustrated chapters with improved figures and flow diagrams Chemical Process Technology, Second Edition is a comprehensive introduction, linking the fundamental theory and concepts to the applied nature of the subject. It will be invaluable to students of chemical engineering, biotechnology and industrial chemistry, as well as practising chemical engineers. From reviews of the first edition: “The authors have blended process technology, chemistry and thermodynamics in an elegant manner... Overall this is a welcome addition to books on chemical technology.” – The Chemist “Impressively wide-ranging and comprehensive... an excellent textbook for students, with a combination of fundamental knowledge and technology.” – Chemistry in Britain (now Chemistry World)
Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
Process Technology provides a general overview about chemical and biochemical process technology. It focuses on the structure and development of production processes, main technological operations and the important aspects of process economics. The theoretical foundations in each chapter are supplemented by case studies and examples in a clear and instructive manner to illustrate the practical aspects. The author highlights operating principles, reasons for application and available industrial equipment of technological operations. Aim is to facilitate those without a process technology background in multi-disciplinary cooperation with (bio-) chemical engineers by providing an overview of this exciting field. The textbook is organized into seven distinct parts: Structure of the chemical industry and (bio-) chemical processes (Bio-) Chemical reaction engineering Molecular separations (distillation, extraction, absorption, adsorption) Mechanical separations (filtration, sedimentation, membranes) Particle and final product manufacturing Development, scale-up, design and safety of processes Major industrial process descriptions
This book will be useful for degree & diploma Curriculum of Engineering and for various associate membership examinations conducted by professional bodies like Institution of Engineers(AMIE) and Indian Institute of chemical Engineers (AMIIChE) etc. Salient Features of This Book * Subject matter has been presented in simple, lucid & easy to understand language * Covers all the topics included in the syllabus of various engineering colleges/Technical Institutes & professional bodies examination papers.
The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas.
Industrial Chemical Process Analysis and Design uses chemical engineering principles to explain the transformation of basic raw materials into major chemical products. The book discusses traditional processes to create products like nitric acid, sulphuric acid, ammonia, and methanol, as well as more novel products like bioethanol and biodiesel. Historical perspectives show how current chemical processes have developed over years or even decades to improve their yields, from the discovery of the chemical reaction or physico-chemical principle to the industrial process needed to yield commercial quantities. Starting with an introduction to process design, optimization, and safety, Martin then provides stand-alone chapters—in a case study fashion—for commercially important chemical production processes. Computational software tools like MATLAB®, Excel, and Chemcad are used throughout to aid process analysis. - Integrates principles of chemical engineering, unit operations, and chemical reactor engineering to understand process synthesis and analysis - Combines traditional computation and modern software tools to compare different solutions for the same problem - Includes historical perspectives and traces the improving efficiencies of commercially important chemical production processes - Features worked examples and end-of-chapter problems with solutions to show the application of concepts discussed in the text
Since the publication of the second edition several United States jurisdictions have mandated consideration of inherently safer design for certain facilities. Notable examples are the inherently safer technology (IST) review requirement in the New Jersey Toxic Chemical Prevention Act (TCPA), and the Inherently Safer Systems Analysis (ISSA) required by the Contra Costa County (California) Industrial Safety Ordinance. More recently, similar requirements have been proposed at the U.S. Federal level in the pending EPA Risk Management Plan (RMP) revisions. Since the concept of inherently safer design applies globally, with its origins in the United Kingdom, the book will apply globally. The new edition builds on the same philosophy as the first two editions, but further clarifies the concept with recent research, practitioner observations, added examples and industry methods, and discussions of security and regulatory issues. Inherently Safer Chemical Processes presents a holistic approach to making the development, manufacture, and use of chemicals safer. The main goal of this book is to help guide the future state of chemical process evolution by illustrating and emphasizing the merits of integrating inherently safer design process-related research, development, and design into a comprehensive process that balances safety, capital, and environmental concerns throughout the life cycle of the process. It discusses strategies of how to: substitute more benign chemicals at the development stage, minimize risk in the transportation of chemicals, use safer processing methods at the manufacturing stage, and decommission a manufacturing plant so that what is left behind does not endanger the public or environment.
Textile chemical processing today, particularly the pre-treatment processes require a highly sophisticated technology and engineering to achieve the well known concepts of "Right first time, Right everytime and Right on time" processing and production. Chemical pre-treatment may be broadly defined as a procedure mainly concerned with the removal of natural as well as added impurities in fabric to a level necessary for good whiteness and absorbency by utilising minimum time, energy and chemicals as well as water. This book discusses the fundamental aspects of chemistry, chemical technology and machineries involved in the various pre-treatment process of textiles before subsequent dyeing, printing and finishing. With the introduction of newer fibres, specialty chemicals, improved technology and sophisticated machineries developed during the last decade, this book fills a gap in this area of technology. However, its real strength is its clear perception of ample background description, which will enable readers to understand most current journals, thus staying abreast of the latest advances in the field.
The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies which can deliver enhanced processing performance in a safe, cost-effective and energy efficient manner. Process intensification has emerged as a promising field which can effectively tackle the challenges of significant process enhancement, whilst also offering the potential to diminish the environmental impact presented by the chemical industry. Following an introduction to process intensification and the principles of green chemistry, this book presents a number of intensified technologies which have been researched and developed, including case studies to illustrate their application to green chemical processes. Topics covered include: • Intensified reactor technologies: spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors, cavitational reactors • Combined reactor/separator systems: membrane reactors, reactive distillation, reactive extraction, reactive absorption • Membrane separations for green chemistry • Industry relevance of process intensification, including economics and environmental impact, opportunities for energy saving, and practical considerations for industrial implementation. Process Intensification for Green Chemistry is a valuable resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries to achieve green chemistry principles.