Download Free Chemical Fundamentals Of Geology Book in PDF and EPUB Free Download. You can read online Chemical Fundamentals Of Geology and write the review.

Chemical principles are fundamental to the Earth sciences, and geoscience students increasingly require a firm grasp of basic chemistry to succeed in their studies. The enlarged third edition of this highly regarded textbook introduces the student to such ‘geo-relevant’ chemistry, presented in the same lucid and accessible style as earlier editions, but the new edition has been strengthened in its coverage of environmental geoscience and incorporates a new chapter introducing isotope geochemistry. The book comprises three broad sections. The first (Chapters 1–4) deals with the basic physical chemistry of geological processes. The second (Chapters 5–8) introduces the wave-mechanical view of the atom and explains the various types of chemical bonding that give Earth materials their diverse and distinctive properties. The final chapters (9–11) survey the geologically relevant elements and isotopes, and explain their formation and their abundances in the cosmos and the Earth. The book concludes with an extensive glossary of terms; appendices cover basic maths, explain basic solution chemistry, and list the chemical elements and the symbols, units and constants used in the book.
Geothermal energy stands out because it can be used as a baseload resource. This book, unlike others, examines the geology related to geothermal applications. Geology dictates (a) how geothermal resources can be found, (b) the nature of the geothermal resource (such as liquid- or vapor-dominated) and (c) how the resource might be developed ultimately (such as flash or binary geothermal plants). The compilation and distillation of geological elements of geothermal systems into a single reference fills a notable gap.
Updated throughout with the latest data and findings, the Second Edition of Essentials of Geochemistry provides students with a solid understanding of the fundamentals of and approaches to modern geochemical analysis. The text uses a concepts of chemical equilibrium approach, which considers the reactions that occur as a result of changes in heat production and pressure within the Earth to introduce students to the basic geochemical principles. This text is for those who want a quantitative treatment that integrates the principles of thermodynamics, solution chemistry, and kinetics into the study of earth processes. This timely text contains numerous examples and problems sets which use SUPCRT92 to allow students to test their understanding of thermodynamic theory and maximize their comprehension of this prominent field. New sections introduce current “hot” topics such as global geochemical change with the short and long term carbon cycle, carbon isotopes and the Permo-Triassic extinction event, kinetics and the origin of life and the use of boron and nitrogen isotopes.
This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
This updated and expanded edition provides a thorough understanding of the measurable properties of groundwater systems and the knowledge to apply hydrochemical, geological, isotopic, and dating approaches to their work. This volume includes question and answer discussions for key concepts presented in the text and the basic hydrological, geological, and physical parameters to be observed and measured. Chemical and Isotopic Groundwater Hydrology, Third Edition covers the chemical tools of groundwater hydrology, the isotopic composition of water and groundwater dating by tritum, carbon-14, Cl-36, and He-4, as well as the application of fossil groundwater as a paleoclimatic indicator.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Aims to present remote sensing as it applies to environmental monitoring. It features mineral and petroleum remote-sensing. There is a focus on multispectral applications and digital photogrammetry. Ratio codes and brightness codes are included in an appendix. This has reduced the spectra of minerals to simple, one-digit-per-band codes, helping the user select the best bands or ratios to highlight a mineral. Imaging gases, especially methane, have been included. With the book, students can perform elevation extraction from digitized stereo pairs. Case studies appear throughout the text, allowing students to see how remote-sensing is used in petroleum and mining companies.
This book is for geoscience students taking introductory or intermediate-level courses in igneous petrology, to help develop key skills (and confidence) in identifying igneous minerals, interpreting and allocating appropriate names to unknown rocks presented to them. The book thus serves, uniquely, both as a conventional course text and as a practical laboratory manual. Following an introduction reviewing igneous nomenclature, each chapter addresses a specific compositional category of magmatic rocks, covering definition, mineralogy, eruption/ emplacement processes, textures and crystallization processes, geotectonic distribution, geochemistry, and aspects of magma genesis. One chapter is devoted to phase equilibrium experiments and magma evolution; another introduces pyroclastic volcanology. Each chapter concludes with exercises, with the answers being provided at the end of the book. Appendices provide a summary of techniques and optical data for microscope mineral identification, an introduction to petrographic calculations, a glossary of petrological terms, and a list of symbols and units. The book is richly illustrated with line drawings, monochrome pictures and colour plates. Additional resources for this book can be found at: http://www.wiley.com/go/gill/igneous.
Many geochemists focus on natural systems with less emphasis on the human impact on those systems. Environmental chemists frequently approach their subject with less consideration of the historical record than geoscientists. The field of environmental geochemistry combines these approaches to address questions about the natural environment and anthropogenic effects on it. Eby provides students with a solid foundation in basic aqueous geochemistry before discussing the important role carbon compounds, isotopes, and minerals play in environmental issues. He then guides students through how these concepts apply to problems facing our atmosphere, continental lands, and oceans. Rather than broadly discussing a variety of environmental problems, the author focuses on principles throughout the text, leading students to understand processes and how knowledge of those processes can be applied to environmental problem solving. A wide variety of case studies and quantitative problems accompany each chapter, giving each instructor the flexibility to tailor the material to his/her course. Many problems have no single correct answer, illustrating the analytical nature of solving real-world environmental problems.