Download Free Chemical Functionalization Of Carbon Nanomaterials Book in PDF and EPUB Free Download. You can read online Chemical Functionalization Of Carbon Nanomaterials and write the review.

Carbon-based nanomaterials are rapidly emerging as one of the most fascinating materials in the twenty-first century. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications provides a thorough examination of carbon nanomaterials, including their variants and how they can be chemically functionalized. It also gives a comprehe
Functionalized Carbon Nanomaterials for Theranostic Applications offers insights into the developments and trends that are progressing fast in the field of functionalized carbon nanomaterials-based devices as diagnostic tools for early stage detection of human diseases. The book provides information on how functionalized carbon nanomaterials are being used as the basis for products, such as early disease diagnostic kits, quantum dots for medical imaging and a growing list of other applications. Sections cover different mechanical, absorption, optical and electrical properties than those found in original nanomaterials. This is an important reference source that will be valuable to materials scientists, biomedical engineers and pharmaceutical scientists who are looking to increase their understanding on how functionalized carbon nanomaterials are being used for a variety of theranostic applications. - Provides readers with information on how to develop functionalized carbon nanomaterials based diagnostic devices and tools - Identifies fabrication and characterization methods for integrated devices for use in theranostic applications - Assesses major challenges for manufacturing functionalized carbon nanomaterial materials for theranostic devices on an industrial scale
Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.
Carbon nanotubes belong to new nanomaterials and have been known for almost 20 years, but their history is somewhat lengthier. They have been identified as promising candidates for various applications.High-temperature preparation techniques are conventional techniques for the synthesis of carbon nanotubes using arc discharge or laser ablation, but today these methods are being replaced by low-temperature vapor deposition techniques, since orientation, alignment, nanotube length, diameter, purity, and density of carbon nanotubes can be precisely controlled. The synthesis of carbon nanotubes by chemical vapor deposition on catalyst arrays leads to nanotube models grown from specific sites on surfaces. The controlled synthesis of nanotubes opens up interesting possibilities in nanoscience and nanotechnologies, including electrical, mechanical and electromechanical properties and devices, chemical functionalization, surface chemistry and photochemistry, molecular sensors, and interfacing with moderate biological systems.Carbon nanotubes are used in many applications due to their unique electrical, mechanical, optical, thermal, and other properties. Conductive and high-strength composite materials, energy saving and energy conversion devices, sensors, visualization of field emissions and sources of radiation, means for storing hydrogen, and nanoscale semiconductor devices, probes, and interconnections are some of the many applications of carbon nanotubes.
Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. - Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery - Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines - High-quality figures and tables on physical and mathematical applications expertly summarize key information – essential if you need quick, critically relevant data
Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rather than a kind of conference proceeding, Carbon Nanotechnology will be very useful not only to experienced scientists and engineers, who wish to broaden their knowledge of the wide-ranging nanotechnology and/or to develop practical devices, but also to graduate and senior undergraduate students who look to make their mark in this field of the future.· A comprehensive treatment from materials chemistry and structure-property to practical applications· Offers an in-depth analysis of various carbon nanotechnologies from both fundamental and practical perspectives· An easily accessible assessment of the materials properties and device performances based on all of the major classes of carbon nanomaterials, including: carbon fiber; diamond; C60; and carbon nanotubes· A concise compilation of the practical applications of carbon nanotechnologies from polymer-carbon nanocomposites to sensors, electron emitters, and molecular electronics
Synthesis, Technology and Applications of Carbon Nanomaterials explores the chemical properties of different classes of carbon nanomaterials and their major applications. As carbon nanomaterials are used for a variety of applications due to their versatile properties and characteristics, this book discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials. It is an essential resource for readers focusing on carbon nanomaterials research. - Explores the chemical properties of different classes of carbon nanomaterials and their major applications - Discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials
Presenting the most relevant advances for employing carbon-based nanostructured materials for analytical purposes, this book serves as a reference manual that guides readers through the possibilities and helps when selecting the most appropriate material for targeted analytical applications. It critically discusses the role these nanomaterials can play in sample preparation, separation procedures and detection limit improvements whilst also considering the future trends in this field. Useful to direct initiatives, this book fills a gap in the literature for graduate students and professional researchers discussing the advantages and limitations across analytical chemistry in industry and academia.
This book overviews the current status of research and development activities of CNTs in nanodevices, nanomaterials, or nanofabrication. This book presents 15 state-of-the-art review articles that cover CNT synthesis technologies for growing highly orientated CNTs, chirality-pure CNTs and CNTs at a large throughput and low cost, CNT assembly techniques, CNT sorting and separation processes, CNT functionalization engineering for more functionalities, CNT fundamental properties and their practical/potential electrical, electronic, optical, mechanical, chemical and biological applications.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.