Download Free Characterizing Groundwater Recharge And Streamflow Using Stable Isotopes Of Oxygen And Hydrogen Book in PDF and EPUB Free Download. You can read online Characterizing Groundwater Recharge And Streamflow Using Stable Isotopes Of Oxygen And Hydrogen and write the review.

This publication discusses several theoretical aspects important to the understanding, planning and monitoring of AR and ASR schemes and presents a selected number of examples illustrating the usefulness of isotopes and other tracers. One section presents the list of available isotope tracers, indicating the type of information that can be obtained from each. The case studies presented in this publication illustrate the use of these tools in the different stages of AR and ASR schemes.
This report assesses the levels and effects of exposure to ionizing radiation. Scientific findings underpin radiation risk evaluation and international protection standards. This report comprises a report with two underpinning scientific annexes. The first annex recapitulates and clarifies the philosophy of science as well as the scientific knowledge for attributing observed health effects in individuals and populations to radiation exposure, and distinguishes between that and inferring risk to individuals and populations from an exposure. The second annex reviews the latest thinking and approaches to quantifying the uncertainties in assessments of risk from radiation exposure, and illustrates these approaches with application to examples that are highly pertinent to radiation protection.
This book represents a new "earth systems" approach to catchments that encompasses the physical and biogeochemical interactions that control the hydrology and biogeochemistry of the system. The text provides a comprehensive treatment of the fundamentals of catchment hydrology, principles of isotope geochemistry, and the isotope variability in the hydrologic cycle -- but the main focus of the book is on case studies in isotope hydrology and isotope geochemistry that explore the applications of isotope techniques for investigating modern environmental problems. Isotope Tracers in Catchment Hydrology is the first synthesis of physical hydrology and isotope geochemistry with catchment focus, and is a valuable reference for professionals and students alike in the fields of hydrology, hydrochemistry, and environmental science. This important interdisciplinary text provides extensive guidelines for the application of isotope techniques for all investigatores facing the challenge of protecting precious water, soil, and ecological resources from the ever-increasing problems associated with population growth and environmental change, including those from urban development and agricultural land uses.
Groundwater is an increasingly important resource to human populations around the world, and the study and protection of groundwater is an essential part of hydrogeology - the subset of hydrology that concentrates on the subsurface. Environmental isotopes, naturally occurring nuclides in water and solutes, have become fundamental tools for tracing
Within the realm of the newly evolving discipline of environmental sciences, the stable-isotope methodology is being used to an ever-increasing extent, especially in the study of the water cycle and of paleo-climatology. This book introduces the rules of the game, by reviewing the natural variability of stable isotopes in the hydrosphere, describing the physico-chemical basis of isotope fractionation, and applying this knowledge to natural waters as they move through the hydrologic cycle from the ocean to the atmosphere, the biosphere and the lithosphere. There is a special focus on the processes at the surface?atmosphere and land?biosphere?atmosphere interfaces, since these are the sites of major changes in isotope composition. In response to the increasing awareness of our changing climate, a discussion on the global view of the changing water cycle, in the past and future, winds up the presentation.
Environmental isotope and nuclear techniques provide unmatched insights into the processes governing the water cycle and its variability. This monograph presents state of the art applications and new developments of isotopes in hydrology, environmental disciplines and climate change studies. Coverage ranges from the assessment of groundwater resources in terms of recharge and flow regime to studies of the past and present global environmental and climate changes.
Investigating Groundwater provides an integrated approach to the challenges associated with locating groundwater. Uniquely, the book provides a review of the wide range of techniques that can be deployed to investigate this important resource. Many of the practical examples given are based upon Australian experience but the methods have worldwide applicability. The book is published in colour and includes many original diagrams and photographs. Particular effort has been made to provide consistent terminology and SI units are used throughout the text Investigating Groundwater starts with an introduction to the historical significance of groundwater and gives an account of climate change. A description of the occurrence of groundwater in different rock types is then provided. A detailed account of surface water techniques is then followed by an account of the interconnections between surface water and groundwater. Four chapters describing groundwater hydraulics are then followed by four chapters describing the latest geophysical techniques. Once the best location of a borehole is determined using these techniques; chapters then describe appropriate drilling methods to use; provide a wide ranging review of geophysical logging, hydrochemical and isotopic techniques, before concluding with a detailed description of groundwater flow to a well. Written for a worldwide audience of degree level geology/engineering practitioners, academics and students involved in groundwater resource investigation methods; Investigating Groundwater is essential reading for those involved in groundwater research. Key Features: Presents the theoretical background and a detailed description of the techniques used in the investigation of groundwater. Describes the general occurrence of groundwater in different rock types; surface water hydrology and interconnected surface and groundwater systems. Provides detailed descriptions of geophysical techniques (seismic, electrical, gravity and heat) and an account of available geophysical logging methods. Reviews hydrochemical and isotope methods, followed by an account of drilling techniques. Gives a detailed account of radial flow to a well, including appropriate modelling and pump-testing techniques and a consideration of non-linear flow. Of interest to anyone involved in the development of groundwater resources, either for domestic supply, for agriculture or for mining.
In recent years, the focus in groundwater studies has expanded to also include groundwater contamination and remediation studies as a part of resource evaluations. While there are other books on the subject, Field Hydrogeology-A Guide for Site Investigations and Report Preparation provides the first integrated presentation of the American Society of Testing Materials (ASTM) standards, US Geological Survey (USGS), and US Environmental Protection Agency (EPA) field techniques. It also includes access to a Web site that contains software for designing aquifer tests and aquifer-recharge experiments. Written by an author with more than 40 years of experience in hydrology and geology, this reference treats the subject from a field standpoint. Useful as a field guide and a textbook, it contains standard methods for planning and undertaking hydrogeologic investigations. It incorporates case studies, contains a glossary of field-hydrogeology technical terms, and provides a detailed list of ASTM standards and key hydrologic Web sites. The guide is based on ASTM standards, EPA, and US Department of Interior (DOI) field technical manuals. The text covers hydrogeologic fundamentals, conceptual models, planning an investigation, surface investigations, subsurface investigations, field inventory, stream flow measurements, water quality measurements, and report preparation. It includes more recent groundwater evaluation techniques such as tracing and isotope techniques. Field Hydrogeology will allow students and seasoned professionals to have a vast array of clearly written descriptive materials and an extensive source of references available at their fingertips. About the Author: John E. Moore, Ph.D., is a hydrogeologist at the USEPA Region 8 in Denver, Colorado. Dr. Moore is also an adjunct professor of hydrology at Metro State College in Denver and a consulting hydrologist. He has more than 40 years of experience in hydrogeology and geology as a researcher, teacher, and consultant. He is internationally recognized as an expert in these fields. Dr. Moore was deputy assistant chief hydrologist and field scientist with the USGS and served as a technical advisor to the USEPA and the U.S. House of Representatives. He is past president of the International Association of Hydrogeologists (IAH) and the American Institute of Hydrology (AIH) and is the chairman of the IAH Education Commission.