Download Free Characterization Of Laminated Safety Glass Interlayers Book in PDF and EPUB Free Download. You can read online Characterization Of Laminated Safety Glass Interlayers and write the review.

Laminated safety glass enables the safe construction of transparent structures. The mechanical behaviour depends on the polymeric interlayer both in the intact and in the post fracture state. In the present work, the mechanical behaviour of ethylene vinyl acetate-based (EVA) and ionoplastic interlayers is investigated for the intact laminated safety glass condition. In particular, the influence of the semi-crystalline structure on the stiffness behaviour is studied with X-Ray Diffraction, Differential Scanning Calorimetry and Dynamic-Mechanical-Thermal-Analysis. The studies on the mechanical behaviour of the interlayer in the fractured laminated safety glass were carried out with polyvinyl butyral-based (PVB) interlayers. First, the temperature and frequency (time) dependent linearity limits are determined in Dynamic-Mechanical-Thermal-Analyses, second, the nonlinear viscoelastic material behaviour is investigated with tensile relaxation tests at different temperatures and strain levels.
Laminated safety glass enables the safe construction of transparent structures. The mechanical behaviour depends on the polymeric interlayer both in the intact and in the post fracture state. In the present work, the mechanical behaviour of ethylene vinyl acetate-based (EVA) and ionoplastic interlayers is investigated for the intact laminated safety glass condition. In particular, the influence of the semi-crystalline structure on the stiffness behaviour is studied with X-Ray Diffraction, Differential Scanning Calorimetry and Dynamic-Mechanical-Thermal-Analysis. The studies on the mechanical behaviour of the interlayer in the fractured laminated safety glass were carried out with polyvinyl butyral-based (PVB) interlayers. First, the temperature and frequency (time) dependent linearity limits are determined in Dynamic-Mechanical-Thermal-Analyses, second, the nonlinear viscoelastic material behaviour is investigated with tensile relaxation tests at different temperatures and strain levels. Miriam Schuster, born in 1990 in Luxembourg, studied Civil Engineering from 2009 to 2014 at University of Luxembourg and TU Darmstadt. She focused and specialized on structural engineering. After working in the Luxembourgish engineering office Schroeder&Associés she returned to TU Darmstadt in February 2016 as a researcher in the Institute of Structural Mechanics and Design (ISM+D). In January 2022, she successfully defended her phd thesis with the topic "Characterization of laminated safety glass interlayers - Thermorheology, Crystallinity and Viscoelasticity". Since then, she has been heading the glass and polymer unit of ISM+D as a postdoctoral researcher.
This book attempts to redress this issue by providing an overview of the recent developments in this field thereby providing a basis for the understanding of the structural performance and design of glass in buildings. Each chapter draws on the latest developments in practice and research and contains contributions from various international glass experts. The mix of general and specialist content ranging from rules of thumb to fracture mechanics and novel applications to post-breakage performance make this book useful to practitioners and researchers. Furthermore, the text is supplemented by tables of the major codes of practice and by an extensive list of references.
Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems comprises 330 papers that were presented at the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022, Cape Town, South Africa, 5-7 September 2022). The topics featured may be clustered into six broad categories that span the themes of mechanics, modelling and engineering design: (i) mechanics of materials (elasticity, plasticity, porous media, fracture, fatigue, damage, delamination, viscosity, creep, shrinkage, etc); (ii) mechanics of structures (dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) numerical modelling and experimental testing (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber); (v) innovative concepts, sustainable engineering and special structures (nanostructures, adaptive structures, smart structures, composite structures, glass structures, bio-inspired structures, shells, membranes, space structures, lightweight structures, etc); (vi) the engineering process and life-cycle considerations (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). Two versions of the papers are available: full papers of length 6 pages are included in an e-book, while short papers of length 2 pages, intended to be concise but self-contained summaries of the full papers, are in this printed book. This work will be of interest to civil, structural, mechanical, marine and aerospace engineers, as well as planners and architects.
This book gathers the peer-reviewed papers presented at the XXIV Conference of the Italian Association of Theoretical and Applied Mechanics, held in Rome, Italy, on September 15-19, 2019 (AIMETA 2019). The conference topics encompass all aspects of general, fluid, solid and structural mechanics, as well as mechanics for machines and mechanical systems, including theoretical, computational and experimental techniques and technological applications. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of the most recent advances in the field.
These are the proceedings of the 3rd International Conference on Engineering Sciences and Technologies (ESaT 2018), held from 12th - 14th September 2018 in the High Tatras Mountains, Tatranské Matliare, Slovak Republic. ESaT 2018 was organized under the auspices of the Faculty of Civil Engineering, Technical University of Košice - Slovak Republic in collaboration with Peter the Great St. Petersburg Polytechnic University - Russia after the successful organization with excellent feedback of the previous international conferences ESaT 2015 and ESaT 2016. The proceedings is covering various topics and disciplines in civil engineering sciences, such as Buildings and Architectural Engineering, Bearing Structures, Material and Environmental Engineering, Construction Technology and Management, Building Physics and Facilities, Geodesy, Surveying and Mapping, Geotechnics and Traffic Engineering. The proceedings report on new and original progress and trends in various fields of engineering sciences that will be of interest to a wide range of academics and professionals from university and industry. 116 papers originating from more than 10 countries have been accepted for publication in the conference proceedings. Each accepted paper was reviewed by two reviewers, selected according to the scientific area and orientation of the paper, which guarantees topicality, quality and an advanced level of the presented results.
Glass offers a wide variety of possible applications for the realization of even the most ambitious designs in architecture, and in the past two decades it has experienced an unparalleled burst of innovation. For planners, this means working constantly with this high-performance material. In compact and appealing form, the completely revised Glass Construction Manual presents the current state of the art on planning and building with glass, from the history through the technical foundations all the way to the most innovative applications. Astonishing perspectives on thermal insulation and solar protection and the addition of thoughtfully selected new practical examples round off this comprehensive reference work.
Flat glass opens up more possibilities for the planner than virtually any other material. Because of the technological complexity of using it, however, no specific structural forms have been developed for glass supporting frameworks as they have been for wood, concrete, and steel. This book is thus the first to present a coherent guide to the planning and design of glass supporting frameworks. The focus is on the pressure-resistant, flat supporting element as a basic building block for broad supporting structures. The spatial and constructive forms of multifunctional, self-supporting glass envelopes are vividly illustrated and systematically explained. The constructions presented exhibit new aesthetic qualities, based not on the dictum of "dematerialization" but on the poetry of gleaming and transparent planes. They ring in a new chapter in the history of glass architecture.