Download Free Chaos Scattering And Statistical Mechanics Book in PDF and EPUB Free Download. You can read online Chaos Scattering And Statistical Mechanics and write the review.

This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. This book will be bought by researchers interested in chaos, dynamical systems, chaotic scattering, and statistical mechanics in theoretical, computational and mathematical physics and also in theoretical chemistry.
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
A valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory.Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity.Recent advances towards a deterministic theory of nonequilibrium statistical physics are summarized: Both Hamiltonian dynamical systems under nonequilibrium boundary conditions and non-Hamiltonian modelings of nonequilibrium steady states by using thermal reservoirs are considered. The surprising new results include transport coefficients that are fractal functions of control parameters, fundamental relations between transport coefficients and chaos quantities, and an understanding of nonequilibrium entropy production in terms of fractal measures and attractors.The theory is particularly useful for the description of many-particle systems with properties in-between conventional thermodynamics and nonlinear science, as they are frequently encountered on nanoscales.
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
This book provides a coherent introduction to the manifestations of chaos in atoms and molecules.
resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].
A clear introduction to chaotic phenomena for undergraduate students in science, engineering, and mathematics.
This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium, but extends to fully nonlinear regimes. These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry and biological physics.
The book is devoted to the study of the correlation effects in many-particle systems. It presents the advanced methods of quantum statistical mechanics (equilibrium and nonequilibrium), and shows their effectiveness and operational ability in applications to problems of quantum solid-state theory, quantum theory of magnetism and the kinetic theory. The book includes description of the fundamental concepts and techniques of analysis following the approach of N N Bogoliubov's school, including recent developments. It provides an overview that introduces the main notions of quantum many-particle physics with the emphasis on concepts and models.This book combines the features of textbook and research monograph. For many topics the aim is to start from the beginning and to guide the reader to the threshold of advanced researches. Many chapters include also additional information and discuss many complex research areas which are not often discussed in other places. The book is useful for established researchers to organize and present the advanced material disseminated in the literature. The book contains also an extensive bibliography.The book serves undergraduate, graduate and postgraduate students, as well as researchers who have had prior experience with the subject matter at a more elementary level or have used other many-particle techniques.
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.