Download Free Chaos And Interactions In Quantum Dots Book in PDF and EPUB Free Download. You can read online Chaos And Interactions In Quantum Dots and write the review.

Spectral twinkling: A new example of singularity-dominated strong fluctuations (summary) / M. Berry -- Quantum chaos in GaAs/AlxGa1-x As microstructures / A. M. Chang -- Ground state spin and Coulomb blockade peak motion in chaotic quantum dots / J. A. Folk ... [et al.] -- Quantum chaos and transport phenomena in quantum dots / A. S. Sachrajda -- Conductance of a ballistic electron billiard in a magnetic field: Does the semiclassical approach apply? / T. Blomquist and I. Zozoulenko -- Semiconductor billiards - a controlled environment to study fractals / R. P. Taylor ... [et al.] -- Experimental signatures of wavefunction scarring in open semiconductor billiards / J. P. Bird, R. Akis, and D. K. Ferry -- Chaos in quantum ratchets / H. Linke ... [et al.] -- Statistics of resonances in open billiards / H. Ishio -- The exterior and interior edge states of magnetic billiards: Spectral statistics and correlations / K. Hornberger and U. Smilansky -- Non-universality of chaotic classical dynamics: implications for quantum chaos / M. Wilkinson -- Chaos and interactions in quantum dots / Y. Alhassid -- Stochastic aspects of many-body systems: The embedded Gaussian ensembles / H. A. Weidenmuller -- Quantum-classical correspondence for isolated systems of interacting particles: Localization and ergodicity energy space / F. M. Izrailev -- Effect of symmetry breaking on statistical distributions / G. E. Mitchell and J. F. Shriner, Jr. -- Quantum chaos and quantum computers / D. L. Shepelyansky -- Disorder and quantum chronodynamics - non-linear [symbol] models / T. Guhr and T. Wilke -- Correlations between periodic orbits and their role in spectral statistics / M. Sieber and K. Richeter -- Quantum spectra and wave functions in terms of periodic orbits for weakly chaotic systems / R. E. Prange, R. Narevich and O. Zaitsev -- Bifurcation of periodic orbit as semiclassical origin of superdeformed shell structure / K. Matsuyanagi -- Wavefunction localization and its semiclassical description in a 3-dimensional system with mixed classical dynamics / M. Brack, M. Sieber and S. M. Reimann -- Neutron stars and quantum billiards / A. Bulgac and P. Magierski -- Scars and other weak localization effects in classically chaotic systems / E. J. Heller -- Tunneling and chaos / S. Tomsovic -- Relaxation and fluctuations in quantum chaos / G. Casati -- Rydberg electrons in crossed fields: A paradigm for nonlinear dynamics beyond two degrees of freedom / T. Uzer -- Classical analysis of correlated multiple ionization in strong fields / B. Eckhardt and K. Sacha -- Classically forbidden processes in photoabsorption spectra / J. B. Delos ... [et al.] -- Quantum Hall effect breakdown steps due to an instability of laminar flow against electron-hole pair formation / L. Eaves -- Dynamical and wave chaos in the Bose-Einstein condensate / W. P. Reinhardt and S. B. McKinney -- Wave dynamical chaos: An experimental approach in billiards / A. Richter -- Acoustic chaos / C. Ellegaard, K. Schaadt and P. Bertelsen -- Ultrasound resonances in a rectangular plate described by random matrices / K. Schaadt, G. Simon and C. Ellegaard -- Quantum correlations and classical resonances in an open chaotic system / W. T. Lu ... [et al.] -- Why do an experiment, if theory is exact, and any experiment can at best approximate theory? / H.-J. Stockmann -- Wave-Chaotic optical resonators and lasers / A. D. Stone -- Angular momentum localization in oval billiards / J. U. Nockel -- Chaos and time-reversed acoustics / M. Fink -- Single-mode delay time statistics for scattering by a chaotic cavity / K. J. H. van Bemmel, H. Schomerus and C. W. J. Beenakker.
Dynamics of billiard balls and their role in physics have received wide attention since the monumental lecture by Lord Kelvin at the turn of the 19th century. Billiards can nowadays be created as quantum dots in the microscopic world enabling one to envisage the so-called quantum chaos, i.e.quantum manifestation of chaos of billiard balls. In fact, owing to recent progress in advanced technology, nanoscale quantum dots, such as chaotic stadium and antidot lattices analogous to the Sinai Billiard, can be fabricated at the interface of semiconductor heterojunctions. This book begins itsexploration of the effect of chaotic electron dynamics on ballistic quantum transport in quantum dots with a puzzling experiment on resistance fluctuations for stadium and circle dots. Throughout the text, major attention is paid to the semiclassical theory which makes it possible to interpretquantum phenomena in the language of the classical world. Chapters one to four are concerned with the elementary statistical methods (curvature, Lyapunov exponent, Kolmogorov-Sinai entropy and escape rate), which are needed for a semiclassical description of transport in quantum dots. Chapters fiveto ten discuss the topical subjects in the field, including the ballistic weak localization, Altshuler-Aronov-Spivak oscillation, partial time-reversal symmetry, persistent current, Arnold diffusion and Coulomb blockade.
Quantum Information Processing and Communication (QIPC) has the potential to revolutionize many areas of science and technology. This book covers the following topics: introduction to quantum computing; quantum logic, information and entanglement; quantum algorithms; error-correcting codes for quantum computations; quantum communication; and more."
This volume is devoted to recent achievements and new challenges in the field of nuclear structure. Both experimental and theoretical issues in the forefront of current research on the subject are covered by leading physicists.
This volume is devoted to recent achievements and new challenges in the field of nuclear structure. Both experimental and theoretical issues in the forefront of current research on the subject are covered by leading physicists.
This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.
Nuclear spins are highly coherent quantum objects that were featured in early ideas and demonstrations of quantum information processing. In silicon, the high-fidelity coherent control of a single phosphorus (31-P) nuclear spin I=1/2 has demonstrated record-breaking coherence times, entanglement, and weak measurements. In this thesis, we demonstrate the coherent quantum control of a single antimony (123-Sb) donor atom, whose higher nuclear spin I = 7/2 corresponds to eight nuclear spin states. However, rather than conventional nuclear magnetic resonance (NMR), we employ nuclear electric resonance (NER) to drive nuclear spin transitions using localized electric fields produced within a silicon nanoelectronic device. This method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus, nor in a non-polar crystal such as silicon. We then present a realistic proposal to construct a chaotic driven top from the nuclear spin of 123-Sb. Signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors, hybrid spin-mechanical quantum systems, and quantum-computing elements using all-electrical controls.
The study of QCD in the confinement regime poses some of the most difficult problems of fundamental physics at present. The mechanism of confinement itself is not described formally, and it is hard to investigate the properties of the fundamental theory in the determination of the structures and interactions of hadronic systems. The strong coupling and the extreme non-linearity of the theory severely limit the applicability and the extension and generalization of models and methods. The area of particle/nuclear physics called Hadron Physics deals with the phenomena determined by the confinement regime of QCD.The International Workshop on Hadron Physics 98 aimed to provide a framework for the comparative evaluation of different approaches to the difficult problems of QCD, and gathered together experts who have been leading developments in hadronic physics in recent years. As a central feature of the workshop program, there were four sets of lectures: (1) “An Introduction to Effective Field Theory” (J F Donoghue); (2) “Non-perturbative QCD” (A Di Giacomo); (3) “Diffraction: Past, Present and Future” (E Predazzi); “QCD at High Temperature and Density” (T Hatsuda). These courses provided a pedagogical and updated account of the recent developments that gave support to the discussion of frontier research problems. The lecturers did very useful work in the review and description of important lines of research.The lectures are reproduced in this book, together with invited talks and contributed papers dealing with specific research problems, for the use and appreciation of a wider audience.
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics.The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics.
Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.