Download Free Change Detection With Remote Sensing Book in PDF and EPUB Free Download. You can read online Change Detection With Remote Sensing and write the review.

This text provides coverage of the fundamentals, the techniques, and the demonstrated results of a variety of projects in a manner accessible to both the novice and the advanced user of remotely sensed data.
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, Third Edition introduces techniques used in the processing of remote sensing digital imagery. It emphasizes the development and implementation of statistically motivated, data-driven techniques. The author achieves this by tightly interweaving theory, algorithms, and computer codes. See What’s New in the Third Edition: Inclusion of extensive code in Python, with a cloud computing example New material on synthetic aperture radar (SAR) data analysis New illustrations in all chapters Extended theoretical development The material is self-contained and illustrated with many programming examples in IDL. The illustrations and applications in the text can be plugged in to the ENVI system in a completely transparent fashion and used immediately both for study and for processing of real imagery. The inclusion of Python-coded versions of the main image analysis algorithms discussed make it accessible to students and teachers without expensive ENVI/IDL licenses. Furthermore, Python platforms can take advantage of new cloud services that essentially provide unlimited computational power. The book covers both multispectral and polarimetric radar image analysis techniques in a way that makes both the differences and parallels clear and emphasizes the importance of choosing appropriate statistical methods. Each chapter concludes with exercises, some of which are small programming projects, intended to illustrate or justify the foregoing development, making this self-contained text ideal for self-study or classroom use.
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided.
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for Python, Fourth Edition, is focused on the development and implementation of statistically motivated, data-driven techniques for digital image analysis of remotely sensed imagery and it features a tight interweaving of statistical and machine learning theory of algorithms with computer codes. It develops statistical methods for the analysis of optical/infrared and synthetic aperture radar (SAR) imagery, including wavelet transformations, kernel methods for nonlinear classification, as well as an introduction to deep learning in the context of feed forward neural networks. New in the Fourth Edition: An in-depth treatment of a recent sequential change detection algorithm for polarimetric SAR image time series. The accompanying software consists of Python (open source) versions of all of the main image analysis algorithms. Presents easy, platform-independent software installation methods (Docker containerization). Utilizes freely accessible imagery via the Google Earth Engine and provides many examples of cloud programming (Google Earth Engine API). Examines deep learning examples including TensorFlow and a sound introduction to neural networks, Based on the success and the reputation of the previous editions and compared to other textbooks in the market, Professor Canty’s fourth edition differs in the depth and sophistication of the material treated as well as in its consistent use of computer codes to illustrate the methods and algorithms discussed. It is self-contained and illustrated with many programming examples, all of which can be conveniently run in a web browser. Each chapter concludes with exercises complementing or extending the material in the text.
Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.
For junior/graduate-level courses in Remote Sensing in Geography, Geology, Forestry, and Biology. This revision of Introductory Digital Image Processing: A Remote Sensing Perspective continues to focus on digital image processing of aircraft- and satellite-derived, remotely sensed data for Earth resource management applications. Extensively illustrated, it explains how to extract biophysical information from remote sensor data for almost all multidisciplinary land-based environmental projects. Part of the Prentice Hall Series Geographic Information Science.
This book expands the current frame of reference of remote sensing and geographic information specialists to include an array of socio-economic and related planning issues. Using remotely sensed data, the project explores the efficacy and policy implications of new approaches toward analyzing data, integrates approaches from human geography and explores the utility of employing geo-technologies to further the politics of local growth and smart growth coalitions, as in green space programs.
This book brings together a collection of invited interdisciplinary persp- tives on the recent topic of Object-based Image Analysis (OBIA). Its c- st tent is based on select papers from the 1 OBIA International Conference held in Salzburg in July 2006, and is enriched by several invited chapters. All submissions have passed through a blind peer-review process resulting in what we believe is a timely volume of the highest scientific, theoretical and technical standards. The concept of OBIA first gained widespread interest within the GIScience (Geographic Information Science) community circa 2000, with the advent of the first commercial software for what was then termed ‘obje- oriented image analysis’. However, it is widely agreed that OBIA builds on older segmentation, edge-detection and classification concepts that have been used in remote sensing image analysis for several decades. Nevert- less, its emergence has provided a new critical bridge to spatial concepts applied in multiscale landscape analysis, Geographic Information Systems (GIS) and the synergy between image-objects and their radiometric char- teristics and analyses in Earth Observation data (EO).
The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.
This publication is a compilation of papers that were presented at the IAHS Symposium on Remote Sensing for Environmental Monitoring and Change Detectionorganised by the IAHS International Commission on Remote Sensing, in Perugia, 2007. The 30 contributions cover approaches using the thermal infrared, microwave and radar; studies monitoring vegetation, snow and ice, and evapotranspiration; and the combination of remote sensing techniques and GISfor hydrological applications.