Download Free Ceramic Membranes For Separation And Reaction Book in PDF and EPUB Free Download. You can read online Ceramic Membranes For Separation And Reaction and write the review.

Ceramic Membranes for Reaction and Separation is the first single-authored guide to the developing area of ceramic membranes. Starting by documenting established procedures of ceramic membrane preparation and characterization, this title then focuses on gas separation. The final chapter covers ceramic membrane reactors;- as distributors and separators, and general engineering considerations. Chapters include key examples to illustrate membrane synthesis, characterisation and applications in industry. Theoretical principles, advantages and disadvantages of using ceramic membranes under the various conditions are discussed where applicable.
With the recent advent of commercial ceramic membranes, inorganic membranes are receiving much attention as unique separators and reactors due to their excellent thermal and chemical stabilities. This volume provides an extensive and integrated survey of the science and technology of inorganic membranes.Various methods for making dense metal and solid electrolyte membranes and porous inorganic membranes with tortuous and nearly straight pores are provided. These inorganic membranes, ranging from ceramics to metals to inorganic polymers, can be characterized by many techniques indicative of their separation performance under idealized as well as application conditions. In addition to many commercial liquid-phase applications, inorganic membranes have been used industrially for gas diffusion and particle filtration and demonstrated for the important high-temperature gas separation and membrane reactor applications. Approximately half of the book is devoted to the subject of inorganic membrane reactors. Useful data in many tables and figures and extensive literature and patent information are given throughout the book for further study.The book is a valuable reference for researchers as well as process engineers who are involved in membrane and separation technology. Chemical engineers, chemists and material scientists should also find the text a comprehensible introduction to the subject.
In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. - Presents an extensive overview of ceramic materials involved in energy conversion and storage - Updates on the tremendous progress that has been achieved in recent years - Showcases authors at the forefront of their fields, including results from the huge amount of published data - Provides a list of requirements for the materials used for each energy technology - Includes an evaluation and comparison of materials available, including their structure, properties and performance
This textbook gives a clear and coherent overview of ceramic membranes, from preparation methods all the way to applications and economics. The authors, who are known for their clear writing style, combine their expertise in environmental engineering and porous materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they´re making a comeback. Indeed, they may hold the key for addressing three of today´s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications. This textbook gives a clear and coherent overview of ceramic membranes, from preparation methods all the way to applications and economics. The authors, who are known for their clear writing style, combine their expertise in environmental engineering and porous materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they´re making a comeback. Indeed, they may hold the key for addressing three of today´s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications.
Approx.480 pagesApprox.480 pages
Membrane Contactors: Fundamentals, Applications and Potentialities, Volume 11 covers new operations that could be efficiently used to improve the performance of a variety of industrial production cycles in applications ranging from biotechnology to agrofood. This book focuses on the basic "principles of work": required membrane materials and properties; major operating parameters; the importance of module configuration and design and; the performance of membrane contactors in specific processes. The authors' dynamic approach to this subject makes Membrane Contactors: Fundamentals, Applications and Potentialities, Volume 11 the most comprehensive book currently available on all aspects related to the 'membrane contactor world.* Describes new unit operations in process engineering* Covers a wide variety of industrial applications, from biotechnology to agrofood* Applicable to process intensification and sustainable growth strategies
This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.
An updated guide to the growing field of nanofiltration including fundamental principles, important industrial applications as well as novel materials With contributions from an international panel of experts, the revised second edition of Nanofiltration contains a comprehensive overview of this growing field. The book covers the basic principles of nanofiltration including the design and characterizations of nanofiltration membranes. The expert contributors highlight the broad ranges of industrial applications including water treatment, food, pulp and paper, and textiles. The book explores photocatalytic nanofiltration reactors, organic solvent nanofiltration, as well as nanofiltration in metal and acid recovery. In addition, information on the most recent developments in the field are examined including nanofiltration retentate treatment and renewable energy-powered nanofiltration. The authors also consider the future of nanofiltration materials such as carbon- as well as polymer-based materials. This important book: Explores the fast growing field of the membrane process of nanofiltration Examines the rapidly expanding industrial sector's use of membranes for water purification Covers the most important industrial applications with a strong focus on water treatment Contains a section on new membrane materials, including carbon-based and polymer-based materials, as well as information on artificial ion and water channels as biomimetic membranes Written for scientists and engineers in the fields of chemistry, environment, food and materials, the second edition of Nanofiltration provides a comprehensive overview of the field, outlines the principles of the technology, explores the industrial applications, and discusses new materials.
Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.
Membrane-Based Separation in Metallurgy: Principles and Applications begins with basic coverage of the basic principles of the topic and then explains how membrane technology helps in the development of new environmentally friendly and sustainable metallurgical processes. The book features the principles of metallurgical process and how widely the membrane-based technology has been applied in metallurgical industry, including the basic principles of membrane-based separation in terms of material science, membrane structure engineering, transport mechanisms, and module design, detailed metallurgical process flowcharts with emphasis on membrane separations, current process designs, and describes problems and provides possible solutions. In addition, the book includes specific membrane applications, molecular design of materials, fine tuning of membrane's multi-scale structure, module selection and process design, along with a final analysis of the environmental and economic benefits achieved by using these new processes.