Download Free Central Nervous System Acting Drugs Molecular Mechanisms Of Neuroprotection And Neurodegeneration Book in PDF and EPUB Free Download. You can read online Central Nervous System Acting Drugs Molecular Mechanisms Of Neuroprotection And Neurodegeneration and write the review.

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. Brain cells are continuously exposed to reactive oxygen species generated by oxidative metabolism, and in certain pathological conditions defense mechanisms against oxygen radicals may be weakened and/or overwhelmed. DNA is a potential target for oxidative damage, and genomic damage can contribute to neuropathogenesis. It is important therefore to identify tools for the quantitative analysis of DNA damage in models on neurological disorders. This book presents detailed information on various neurodegenerative disorders and their connection with oxidative stress. This information will provide clinicians with directions to treat these disorders with appropriate therapy and is also of vital importance for the drug industries for the design of new drugs for treatment of degenerative disorders.* Contains the latest information on the subject of neurodegenerative disorders* Reflects on various factors involved in degeneration and gives suggestions for how to tackle these problems
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel
Discovery and Development of Neuroprotective Agents from Natural Products draws together global research on medicinal agents from natural sources as starting points for the design of neuroprotective drugs. From the prediction of promising leads and identification of active agents to the extraction of complex molecules, the book explores a range of important topics to support the development of safer, more economical therapeutics for these increasingly prevalent diseases. Beginning with an overview of current developments in the field, the book goes on to explore the identification, extraction and phytochemistry of such neuroprotective agents as antioxidants, biophenols and naturally occurring anti-inflammatory steroid analogues. Specific natural sources of bioactive agents are reviewed, and the development of these agents into therapeutics for a number of specific neurological disorders, including Alzheimer's disease, Parkinson's disease and ischemic brain stroke, are discussed. Combining the expertise of specialists from around the world, this in the Natural Products Drug Discovery series aims to support and encourage researchers in the investigation of natural sources as starting points for the development of standardized, safe and effective neuroprotective drugs. - Features chapters written by active researchers and leading global experts deeply engaged in the research field of natural product chemistry for drug discovery - Includes comprehensive coverage of cutting-edge research advances in the design of drugs from natural products targeted at different kinds of neurodegenerative diseases - Offers a practical review of identification, isolation and extraction techniques to support medicinal chemists in the lab
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.
Cottrell's Neuroanesthesia 5th Edition, edited by James E. Cottrell, MD, FRCA and William L. Young, MD, delivers the complete and authoritative guidance you need to ensure optimal perioperative safety for neurosurgical patients. Integrating current scientific principles with the newest clinical applications, it not only explains what to do under any set of circumstances but also why to do it and how to avoid complications. Comprehensive updates reflect all of the latest developments in neurosurgical anesthesia, and contributions from many new experts provide fresh insights into overcoming tough clinical challenges. New co-editor William L. Young, MD joins James E. Cottrell, MD, FRCA at the book's editorial helm, providing additional, complementary expertise and further enhancing the book's authority. New chapters keep you current on interventional neuroradiology, anesthetic management of patients with arteriovenous malformations and aneurysms, awake craniotomy, epilepsy, minimally invasive and robotic surgery, and pregnancy and neurologic disease. Comprehensive updates reflect all of the latest developments in neurosurgical anesthesia, and contributions from many new experts provide fresh insights into overcoming tough clinical challenges. Comprehensive and broad coverage of all important aspects of neuroanesthesia, including special patient populations, enables you to find reliable answers to any clinical question. Chapters written by neurointensivists, neurosurgeons, and radiologists provide well-rounded perspectives on each topic. A consistent, logical organization to every chapter makes answers easy to find quickly. Clear conceptual illustrations make complex concepts easier to understand at a glance.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
As clinical trials of pharmacological neuroprotective strategies in stroke have been disappointing, attention has turned to the brain's own endogenous strategies for neuroprotection. Two endogenous mechanisms have been recently characterized, ischemic preconditioning and ischemic postconditioning. In the present topic newly characterized mechanisms involved in preconditioning- and postconditioning- neuroprotection will be discussed. The understanding of the mechanisms involved in the neuroprotective pathways induced by preconditioning and postconditioning will be clinically relevant for identifying new druggable target for neurodegenerative disorder therapy. Furthermore, the importance of these neuroprotective strategies resides in that it might be easily translatable into clinical practice. Therefore, the data presented here will highlight the capacity of ischemic preconditioning and postconditioning to be of benefit to humans.
The book provides chapters on sex hormones and their modulation in neurodegenerative processes and pathologies, from basic molecular mechanisms, physiology, gender differences, to neuroprotection and clinical aspects for potential novel pharmacotherapy approaches. The book contains 14 chapters written by authors from various biomedical professions, from basic researchers in biology and physiology to medicine and veterinary medicine, pharmacologists, psychiatrist, etc. Chapters sum up the past and current knowledge on sex hormones, representing original new insights into their role in brain functioning, mental disorders and neurodegenerative diseases. The book is written for a broad range of audience, from biomedical students to highly profiled medical specialists and biomedical researchers, helping them to expand their knowledge on sex hormones in neurodegenerative processes and opening new questions for further investigation.