Download Free Cellular Radiobiology Book in PDF and EPUB Free Download. You can read online Cellular Radiobiology and write the review.

In print since 1972, this seventh edition of Radiobiology for the Radiologist is the most extensively revised to date. It consists of two sections, one for those studying or practicing diagnostic radiolo, nuclear medicine and radiation oncology; the other for those engaged in the study or clinical practice of radiation oncology--a new chapter, on radiologic terrorism, is specifically for those in the radiation sciences who would manage exposed individuals in the event of a terrorist event. The 17 chapters in Section I represent a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA. The 11 chapters in Section II address more in-depth topics in radiation oncology, such as cancer biology, retreatment after radiotherapy, chemotherapeutic agents and hyperthermia. Now in full color, this lavishly illustrated new edition is replete with tables and figures that underscore essential concepts. Each chapter concludes with a "summary of pertinent conclusions" to facilitate quick review and help readers retain important information.
This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.
This book presents new information on radiobiology that more clearly refutes the linear no-threshold (LNT) assumption and supports radiation hormesis. Fresh light is cast on the mechanisms of radiation hormesis and the potential benefits of low-dose ionizing radiation in preventing and treating a wide variety of inflammatory and proliferative diseases. It is proposed that these effects may derive from cellular communication via electromagnetic waves directed by DNA, with each cell acting as a quantum computer. Readers will also find close analysis of the negative impacts of radiophobia on many aspects of modern life, including attitudes to imaging technologies, licensing of nuclear power reactors, and preparedness for survival of nuclear war. The book will be of interest to researchers and scientists in radiobiology, radiation protection, health physics, medical physics, and radiology. Specifically, it will provide medical physicians, radiation oncologists, radiation epidemiologists, gerontologists, cell biologists, toxicologists, and nuclear engineers with a wide range of interesting facts and enlightening novel perspectives.
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.
Over the past several decades, public concern over exposure to ionizing radiation has increased. This concern has manifested itself in different ways depending on the perception of risk to different individuals and different groups and the circumstances of their exposure. One such group are those U.S. servicemen (the "Atomic Veterans" who participated in the atmospheric testing of nuclear weapons at the Nevada Test Site or in the Pacific Proving Grounds, who served with occupation forces in or near Hiroshima and Nagasaki, or who were prisoners of war in or near those cities at the time of, or shortly after, the atomic bombings. This book addresses the feasibility of conducting an epidemiologic study to determine if there is an increased risk of adverse reproductive outcomes in the spouses, children, and grandchildren of the Atomic Veterans.
Radiobiology, also known as radiation biology, is a field of clinical and basic medical sciences that involves the study of the action of ionising radiation on living things. This handbook is a complete guide to radiobiology for postgraduate students. Beginning with an overview of human biology and radiation physics, the following chapters explain the interaction of radiation with cells, its beneficial damage to cancer cells, and adverse effects on normal cells and organs. The final sections of the book cover time, dose and fractionation models, and radiation safety and protection. Enhanced by images and tables, this useful reference text is presented in a logical format with simple terms to assist learning and understanding. Key Points Complete guide to radiobiology for postgraduate students Covers beneficial damage to cancer cells and adverse effects on normal cells Explains time, dose and fractionation models Logical, easy to understand format
This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
Advances in Radiation Biology, Volume 14: Relative Radiation Sensitivities of Human Organ Systems, Part II focuses on radiation sensitivities of particular human organ systems. The sensitivities are then assessed based on the severity and the rapidity in which the effects of radiation manifest. The opening chapter surveys the clinical and experimental data on approaches toward the prevention of bladder complications in clinical radiotherapy. A discussion on HeLa cells, which are of special importance in human cervical cancer therapy, is then presented. In presenting this topic, this book emph ...
This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.