Download Free Celluar And Molecular Mechanisms Underlying Regulation Of Skeletal Muscle Contraction In Health And Disease Book in PDF and EPUB Free Download. You can read online Celluar And Molecular Mechanisms Underlying Regulation Of Skeletal Muscle Contraction In Health And Disease and write the review.

Molecular Control Mechanisms in Striated Muscle Contraction addresses the molecular mechanisms by which contraction of heart and skeletal muscles is regulated, as well as the modulation of these mechanisms by important (patho)physiological variables such as ionic composition of the myoplasm and phosphorylations of contractile and regulatory proteins. For the novice, this volume includes chapters that summarize current understanding of excitation-contraction coupling in striated muscles, as well as the compositions and structures myofibrillar thick and thin filaments. For the expert, this volume presents detailed pictures of current understanding of the mechanisms underlying the CA2+ regulation of contraction in heart and skeletal muscles and discusses important directions for future investigation.
This volume presents the proceedings of a muscle symposium, which was supported by the grant from the Fujihara Foundation of Science to be held as the Fourth Fujihara Seminar on October 28 -November 1, 2002, at Hakone, Japan. The Fujihara Seminar covers all fields of natural science, while only one proposal is granted every year. It is therefore a great honor for me to be able to organize this meeting. Before this symposium, I have organized muscle symposia five times, and published the proceedings: " Cross-bridge Mechanism in Muscle Contraction (University of Tokyo Press, 1978), "Contractile Mechanisms in Muscle" (plenum, 1984); "Molecular Mechanisms of Muscle Contraction" (plenum, 1988); "Mechanism of MyofIlament Sliding in Muscle contraction" (plenum, 1993); "Mechanisms of Work Production and Work Absorption in Muscle" (plenum, 1998). As with these proceedings, this volume contains records of discussions made not only after each presentation but also during the periods of General Discussion, in order that general readers may properly evaluate each presentation and the up-to-date situation of this research field. It was my great pleasure to have Dr. Hugh Huxley, a principal discoverer of the sliding fIlament mechanism in muscle contraction, in this meeting. On my request, Dr. Huxley kindly gave a special lecture on his monumental discovery of myofIlament-lattice structure by X-ray diffraction of living skeletal muscle. I hope general readers to learn how a breakthrough in a specific research field can be achieved.
This volume intends to provide a comprehensive overview on the mecha nisms of muscle contraction and non-muscle cell motility at the molecu lar and cellular level, not only for investigators in these fields but also for general readers interested in these topics. A most attractive feature of various living organisms in the animal and plant kingdoms is their ability to move. In spite of a great diversity in the structure and function of various motile systems, it has frequently been assumed since the nineteenth century that all kinds of "motility" are essentially the same. Based on this assumption, some investigators in the nineteenth century thought that the mechanisms of motility could better be studied on primitive non-muscle motile systems such as amoeboid movement, rath er than on highly specialized muscle cells. Contrary to their expectation, however, the basic mechanisms of motility have been revealed solely by investigations on vertebrate skeletal muscles, since a monumental discovery of Szent-Gyorgyi and his coworkers in the early 1940s that muscle contraction results from the interaction between two different contractile proteins, actin and myosin, coupled with ATP hydrolysis.
Hypertension is recognized to be one of the major risk factors for the development of peripheral vascular disease. The last decade has witnessed several major advances in therapy for hypertension, including the development of angiotensin-converting enzyme inhibitors and calcium channel blockers. These compounds have greatly improved the ability to control blood pressure and to reduce the impact of this risk factor on morbidity and mortality. In spite of these advances, cardiovascular disease remains a major health problem in most modern industrialized countries with related deaths exceeding those from all other causes combined. In contrast to these advances in therapy, our understanding of the basic mechanisms responsible for the pathogenesis of hypertension remains incomplete. Recent studies have produced new insights into the nature of the regulation of muscle contraction in both heart and blood vessels as well as the changes in muscle function that occur in hypertension. However, the effects of antihypertensive therapy, both in terms of restoring normal function and in producing reversal of hypertension-associated changes, has not been as thoroughly studied, especially in the vasculature. Studies in the heart suggest that the efficacy of different therapeutic agents in restoring normal function and reversing hypertensive changes vary substantially with the mechanism of action of the therapeutic agent. It has also been recently determined that some therapeutic agents produce adverse effects on plasma lipid profiles, which could lead to the secondary acceleration of the atherosclerotic process, while at the same time normalizing blood pressure.
Collectively, the findings about how Notch signaling and Bex1 regulate the function of satellite cells as well as muscle regeneration derived from this dissertation will extend our understanding of the cellular and molecular mechanism of muscle regeneration. Consequently, this dissertation can shed light on providing therapeutic avenues for the prevention and treatment of muscle diseases.
This reference on the state-of-the-art of neuromuscular diseases as a whole offers a current review of inherited neuromuscular diseases under different approaches: genetics, pathomechanisms, therapies and treatments.
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
In its Third Edition, this text addresses basic and applied physiological properties of skeletal muscle in the context of the physiological effects from clinical treatment. Anyone interested in human movement analysis and the understanding of generation and control from the musculoskeletal and neuromuscular systems in implementing movement will find this a valuable resource. A highlight color has been added to this edition's updated figures and tables, and the color plates section has been doubled, ensuring that all figures that need color treatment to clarify concepts receive this treatment. A new Clinical Problem feature uses concepts presented in each chapter in the context of a specific clinical case--for example, a spinal cord injury, a sports accident, or rehabilitation after bed rest.