Download Free Cell Culture Techniques In Heart And Vessel Research Book in PDF and EPUB Free Download. You can read online Cell Culture Techniques In Heart And Vessel Research and write the review.

In the cardiovascular sciences, an increasing demand for the use of modern methods of cell biology has developed. The use of specific cell culture models of the various tissues involved is essential for most of these novel approaches. This book meets the demand for acomprehensive and easy accessible source for cell cul- ture methods in cardiovascular research as it was not previously available. The basic methods for cultures of cardiomyocytes (embryonic and adult), endothelial cells (micro- and macrovascular), smooth muscle cells and pericytes are described in detail by an international selection of experts. Special chapters discuss the use of growth factors and attachment substrates, techniques for co-cultures, cultures on permeable filter membranes and microcarrier cultures. The methodological descriptions are sufficiently detailed for an immediate application in the laboratory. All chapters also contain a critical evaluation of alternative approaches.
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Endothelial Cell Culture contains chapters on endothelial cells derived from 1) lung, 2) bone marrow, 3) brain, 4) mammary glands, 5) skin, 6) adipose tissue, 7) female reproductive system, and 8) synovium.
The participation of endothelial cells in various physiologic and pathologic processes has been hypothesized since before the turn of the century. However, until recently, direct evidence for endothelial involvement in these processes has been extremely difficult to obtain due to the inability to study endothelial cell function in vitro. Though the possibility of using cultured endothelial cells to study endothelial cell function in vitro was recognized many years ago, the inability to culture unambiguously identifiable endothelial cells limited investigators in their studies of endothelial function. As a result, the field of endothelial cell biology lay relatively fallow for many years. The development in the early 1970's of routine and easily implemented methods for culturing human endothelial cells and the demonstration that cultured endothelial cells synthesized a physiologically relevant protein, Factor VIII/von Willebrand Factor, quickly changed this state of affairs. Over the following decade the scope of endothelial cell research rapidly widened, spreading in a number of directions. First, methods were developed to culture endothelial cells from a variety of species. Second, methods were developed to culture endothelial cells from different organs and types of blood vessels (arteries, veins, and capillaries) within a single species. Third, and most important, investigators began using cultured endothelial cells as tools to study the potential involvement of endothelial cells in a wide assortment of biologically interesting processes. The net result has been a tremendous increase in our understanding of endothelial cell function.
In the cardiovascular sciences, an increasing demand for the use of modern methods of cell biology has developed. The use of specific cell culture models of the various tissues involved is essential for most of these novel approaches. This book meets the demand for acomprehensive and easy accessible source for cell cul- ture methods in cardiovascular research as it was not previously available. The basic methods for cultures of cardiomyocytes (embryonic and adult), endothelial cells (micro- and macrovascular), smooth muscle cells and pericytes are described in detail by an international selection of experts. Special chapters discuss the use of growth factors and attachment substrates, techniques for co-cultures, cultures on permeable filter membranes and microcarrier cultures. The methodological descriptions are sufficiently detailed for an immediate application in the laboratory. All chapters also contain a critical evaluation of alternative approaches.
Scientists working or planning to work in the field of cardiovascular research will welcome Methods in Cardiovascular Research as the reference book they have been waiting for. Not only general aspects of cardiovascular research are well presented but also detailed descriptions of methods, protocols and practical examples. Written by leading scientists in their field, chapters cover classical methods such as the Langendorff heart or working heart models as well as numerous new techniques and methods. Newcomers and experienced researchers alike will benefit from the troubleshooting guide in each chapter, the extensive reference lists for advanced reading and the great practical experience of the authors. Methods in Cardiovascular Research is a "must have" for anybody with an interest in cardiovascular research.
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
It is a pleasure to contribute the foreword to Introduction to Cell and Tissue Culture: The ory and Techniques by Mather and Roberts. Despite the occasional appearance of thought ful works devoted to elementary or advanced cell culture methodology, a place remains for a comprehensive and definitive volume that can be used to advantage by both the novice and the expert in the field. In this book, Mather and Roberts present the relevant method ology within a conceptual framework of cell biology, genetics, nutrition, endocrinology, and physiology that renders technical cell culture information in a comprehensive, logical for mat. This allows topics to be presented with an emphasis on troubleshooting problems from a basis of understanding the underlying theory. The material is presented in a way that is adaptable to student use in formal courses; it also should be functional when used on a daily basis by professional cell culturists in a- demia and industry. The volume includes references to relevant Internet sites and other use ful sources of information. In addition to the fundamentals, attention is also given to mod ern applications and approaches to cell culture derivation, medium formulation, culture scale-up, and biotechnology, presented by scientists who are pioneers in these areas. With this volume, it should be possible to establish and maintain a cell culture laboratory devot ed to any of the many disciplines to which cell culture methodology is applicable.
Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science
In Vitro Methods in Pharmaceutical Research provides a comprehensive guide to laboratory techniques for evaluating in vitro organ toxicity using cellular models. Step-by-step practical tips on how to perform and interpret assays for drug metabolism and toxicity assessment are provided, along with a comparison of different techniques available. It is a welcome addition to the literature at a time when interest is growing in cellular in vitro models for toxicology and pharmacology studies. - Meets the continuing demand for information in this field - Compares In Vitro techniques with other methods - Describes cell-culture methods used to investigate toxicity in cells derived from different organs - Includes contributions by leading experts in the field