Download Free Cavitation In Fluid Machinery Book in PDF and EPUB Free Download. You can read online Cavitation In Fluid Machinery and write the review.

This book treats cavitation, which is a unique phenomenon in the field of hyd- dynamics, although it can occur in any hydraulic machinery such as pumps, propellers, artificial hearts, and so forth. Cavitation is generated not only in water, but also in any kind of fluid, such as liquid hydrogen. The generation of cavitation can cause severe damage in hydraulic machinery. Therefore, the prevention of cavitation is an important concern for designers of hydraulic machinery. On the contrary, there is great potential to utilize cavitation in various important applications, such as environmental protection. There have been several books published on cavitation, including one by the same authors. This book differs from those previous ones, in that it is both more physical and more theoretical. Any theoretical explanation of the cavitation phenomenon is rather difficult, but the authors have succeeded in explaining it very well, and a reader can follow the equations easily. It is an advantage in reading this book to have some understanding of the physics of cavitation. Therefore, this book is not an introductory text, but a book for more advanced study. However, this does not mean that this book is too difficult for a beginner, because it explains the cavitation phenomenon using many figures. Therefore, even a beginner on cavitation can read and can understand what cavitation is. If the student studies through this book (with patience), he or she can become an expert on the physics of cavitation.
This volume in the Hydraulic Machinery Book series deals with cavitation and its effects in turbines and pumps. After introducing cavitation and its relation with hydraulic machines, the invited contributors throughout the world review in detail relevant cavitation subjects from fundamental phenomena to various problems and solution measures in hydraulic machines. The authors are internationally recognized experts in their fields.
Cavitation and Bubble Dynamics: Fundamentals and Applications examines the latest advances in the field of cavitation and multiphase flows, including associated effects such as material erosion and spray instabilities. This book tackles the challenges of cavitation hindrance in the industrial world, while also drawing on interdisciplinary research to inform academic audiences on the latest advances in the fundamentals. Contributions to the book come from a wide range of specialists in areas including fuel systems, hydropower, marine engineering, multiphase flows and computational fluid mechanics, allowing readers to discover novel interdisciplinary experimentation techniques and research results. This book will be an essential tool for industry professionals and researchers working on applications where cavitation hindrance affects reliability, noise, and vibrations. Covers a wide range of cavitation and bubble dynamics phenomena, including shock wave emission, jetting, and luminescence Provides the latest advice about applications including cavitation tunnels, cavitation testing, flow designs to avoid cavitation in pumps and other hydromachinery, and flow lines Describes novel experimental techniques, such as x-ray imaging and new computational techniques
In the second volume, the papers included the following topics: hydraulic transients and control systems related to hydraulic machinery and plants; and oscillatory and vibration problems in hydraulic machinery and power stations.
The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating turbopumps (cavitation surge, rotating cavitation, higher order cavitation surge, rotordynamic whirl forces). Finally, the third part of the book illustrates the alternative approaches for the simulation of cavitating flows, with emphasis on both modeling and numerical aspects. Examples of applications to the simulation of unsteady cavitation in internal flows through hydraulic machinery are illustrated in detail.
Published nearly a decade ago, Fluid Machinery: Performance, Analysis, and Design quickly became popular with students, professors, and professionals because of its comprehensive and comprehensible introduction to the fluid mechanics of turbomachinery. Renamed to reflect its wider scope and reorganized content, this second edition provides a more l