Download Free Causality And Chance In Modern Physics Foreword By L De Broglie Book in PDF and EPUB Free Download. You can read online Causality And Chance In Modern Physics Foreword By L De Broglie and write the review.

In this classic, David Bohm was the first to offer us his causal interpretation of the quantum theory. Causality and Chance in Modern Physics continues to make possible further insight into the meaning of the quantum theory and to suggest ways of extending the theory into new directions.
Fundamental Causation addresses issues in the metaphysics of deterministic singular causation, the metaphysics of events, property instances, facts, preventions, and omissions, as well as the debate between causal reductionists and causal anti-reductionists. The book also pays special attention to causation and causal structure in physics. Weaver argues that causation is a multigrade obtaining relation that is transitive, irreflexive, and asymmetric. When causation is singular, deterministic and such that it relates purely contingent events, the relation is also universal, intrinsic, and well-founded. He shows that proper causal relata are events understood as states of substances at ontological indices. He then proves that causation cannot be reduced to some non-causal base, and that the best account of that relation should be unashamedly primitivist about the dependence relation that underwrites its very nature. The book demonstrates a distinctive realist and anti-reductionist account of causation by detailing precisely how the account outperforms reductionist and competing anti-reductionist accounts in that it handles all of the difficult cases while overcoming all of the general objections to anti-reductionism upon which other anti-reductionist accounts falter. This book offers an original and interesting view of causation and will appeal to scholars and advanced students in the areas of metaphysics, philosophy of science, and philosophy of physics.
This authoritative biography addresses the life and work of the quantum physicist David Bohm. Although quantum physics is considered the soundest physical theory, its strange and paradoxical features have challenged - and continue to challenge - even the brightest thinkers. David Bohm dedicated his entire life to enhancing our understanding of quantum mysteries, in particular quantum nonlocality. His work took place at the height of the cultural/political upheaval in the 1950's, which led him to become the most notable American scientist to seek exile in the last century. The story of his life is as fascinating as his ideas on the quantum world are appealing.
The principle, omne agens agit sibi simile, "every agent causes something similar to itself," is fundamental to Scholastic metaphysics, and especially natural theology. In fact, it is only upon its vasis that inferences can be made from creaturely characteristics to the nature of the Creator. However, omne agens agit sibi simile, is taken for granted even by an author such as Saint Thomas Aquinas, who never feels any need to justify its validity, in spite of the fact that "there is hardly a phrase which occurs more often in Saint Thomas," as Etienne Gilson remarked. Tracing the historical roots of omne agens agit sibi simile is an indispensable first step in trying to explain the import of this principle in Scholastic Thought. The first part of the book is devoted to this task. it argues that the mediaeval metaphysics of causal similarity is rooted in a conception of the cosmos which goes back to the Presocratics, and according to which being is essentially circular, or self-reflexive. This conception was further elaborated by Plato, Aristotle, the Neoplatonists, and their mediaeval successors. The second part examines omne agens agit sibi simile in Thomistic metaphysics. Without neglecting Aquinas's sources, it attempts to elucidate the structure of his thought in the light of contemporary philosophical questions. It is stressed, for instance, that in Aquinas's thought, causality involves a process of 'concealing revelation" of the cause in and through its effect?an idea which was later to become a central element in Heidegger's philosophy.
This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.
This is the only book which deals with the correlatory comparison between hierarchical living systems and inorganic physical ones. The culmination of the book is the proposition of research to discover and understand the natural underlying level of organization which produces the descriptive commonality of life and physics. Traditional science eliminates life from its purview by its rejection of interrelationships as a primary content of systems. The conventional procedure of science is that of reductionism, whereby complex systems are dismantled to characterize lower level components, but virtually no attention is given to how to rebuild those systems—the underlying assumption is that analysis and synthesis are symmetrical. This book fulfills two main coupled functions. Firstly, it details hierarchy as the major formulation of natural complex systems and investigates the fundamental character of natural hierarchy as a widely transferable ‘container’ of structure and/or function – and this in the case of the new development of a representational or model hierarchy. Secondly, it couples this hierarchical description to that of the electronic properties of semiconductors, as a well-modeled canonical example of physical properties. The central thesis is that these two descriptions are comparable, if care is taken to treat logical and epistemological aspects with prudence: a large part of the book is composed of just this aspect of care for grounding consistency. As such great attention is given to correct assessment of argumentative features which are otherwise presumed ‘known’ but which are usually left uncertain. Development of the ideas is always based on a relationship between entity or phenomenon and their associated ecosystems, and this applies equally well to the consequent derivations of consciousness and information.
This book presents in a concise way the Mie theory and its current applications. It begins with an overview of current theories, computational methods, experimental techniques, and applications of optics of small particles. There is also some biographic information on Gustav Mie, who published his famous paper on the colour of Gold colloids in 1908. The Mie solution for the light scattering of small spherical particles set the basis for more advanced scattering theories and today there are many methods to calculate light scattering and absorption for practically any shape and composition of particles. The optics of small particles is of interest in industrial, atmospheric, astronomic and other research. The book covers the latest developments in divers fields in scattering theory such as plasmon resonance, multiple scattering and optical force.
This collection of the writings of Paul Feyerabend is focused on his philosophy of quantum physics, the hotbed of the key issues of his most debated ideas. Written between 1948 and 1970, these writings come from his first and most productive period. These early works are important for two main reasons. First, they document Feyerabend's deep concern with the philosophical implications of quantum physics and its interpretations. These ideas were paid less attention in the following two decades. Second, the writings provide the crucial background for Feyerabend's critiques of Karl Popper and Thomas Kuhn. Although rarely considered by scholars, Feyerabend's early work culminated in the first version of Against Method. These writings guided him on all the key issues of his most well-known and debated theses, such as the incommensurability thesis, the principles of proliferation and tenacity, and his particular version of relativism, and more specifically on quantum mechanics.