Download Free Catalytic Oxidation Book in PDF and EPUB Free Download. You can read online Catalytic Oxidation and write the review.

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
This book consists of lectures presented by international authorities in the field, at a course on Oxidation Catalysis organized by the Dutch Research School in Catalysis at Rolduc in June 1994.The material covered spans the whole range of the subject from the fundamental principles of gas and liquid phase oxidations to reactor engineering for industrial processing. The use of catalytic oxidation in both bulk and fine chemicals manufacture and the different types of catalysis — heterogeneous-gas phase, homogeneous-liquid phase and heterogeneous-liquid phase — are discussed. In addition, a few special topics, such as electrocatalytic and high-temperature oxidation are dealt with.The book is intended for graduate students or industrial researchers who wish to acquaint themselves with the underlying principles of catalytic oxidations and the numerous applications of this important technology.
This monograph consists of the proceedings of the Fifth International Symposium on the Activation of Dioxygen and Homogeneous Catalytic Oxidation, held in College Station, Texas, March 14-19, 1993. It contains an introductory chapter authored by Professors D. H. R. Barton and D. T. Sawyer, and twenty-nine chapters describing presentations by the plenary lecturers and invited speakers. One of the invited speakers, who could not submit a manuscript for reasons beyond his control, is represented by an abstract of his lecture. Also included are abstracts of forty-seven posters contributed by participants in the symposium. Readers who may wish to know more about the subjects presented in abstract form are invited to communicate directly with the authors of the abstracts. This is the fifth international symposium that has been held on this subject. The first was hosted by the CNRS, May 21-29, 1979, in Bendor, France (on the Island of Bandol). The second meeting was organized as a NATO workshop in Padova, Italy, June 24-27, 1984. This was followed by a meeting in Tsukuba, Japan, July 12-16, 1987. The fourth symposium was held at Balatonfured, Hungary, September 10-14, 1990. The sixth meeting is scheduled to take place in Delft, The Netherlands (late Spring, 1996); the organizer and host will be Professor R. A. Sheldon.
This book offers a comprehensive overview of the most recent developments in both total oxidation and combustion and also in selective oxidation. For each topic, fundamental aspects are paralleled with industrial applications. The book covers oxidation catalysis, one of the major areas of industrial chemistry, outlining recent achievements, current challenges and future opportunities. One distinguishing feature of the book is the selection of arguments which are emblematic of current trends in the chemical industry, such as miniaturization, use of alternative, greener oxidants, and innovative systems for pollutant abatement. Topics outlined are described in terms of both catalyst and reaction chemistry, and also reactor and process technology.
The field of petrochemicals started some years ago with the simple addition reaction of water to propylene for the production of isopropyl alcohol. Currently, the petrochemical industry has become a multi-billion dollar enterprise which encompasses a wide field of chemical products. Almost all the basic organic reactions such as hydrogenation, alkylation, substitution, polymerization, etc. are utilized for the production of these chemicals. It may not, however, have been possible to establish this huge industry without the use of different catalysts. In other words, the great advancements in the catalytic area have supported the vast developments in the petrochemical field. In this book, we have adopted the idea of discussing the petrochemical industry from the point of view of reactants' activities and susceptibilities toward different catalysts. The book is thus classified according to the reaction type. This will eriable students and other users of the book to base their understanding of the petrochemical field on the fundamental principles learned in chemistry. How ever, the first chapter is aimed at establishing some basic facts on the petro chemical industry and its major uses. It discusses, without going into details, the raw materials used, the intermediates and the downstream products. The next eight chapters discuss in some detail the main reactions and the catalysts used for the production of chemicals and polymers from petroleum. The last chapter is devoted to a discussion of some of the practical techniques used in the catalytic field.
A method for oxidizing liquid organic wastes from a nuclear fuel separations plant using a catalytic bed as a method of disposal was investigated. Wastes were fed either as a liquid or vapor, together with a flow of air, through the catalyst bed. Oxidation took place with the generation of heat. Off-gases were contained and could be monitored. A list of some catalysts used as well as the organics oxidized by this method are presented.
The chemoselective oxidation of vicinal diols to α-hydroxyketones is a challenge in organic syntheses because not only does the diol need to be oxidized selectively to a monocarbonyl compound, but diols are also prone to overoxidation and oxidative cleavage. Employing a cationic palladium complex, [(neocuproine)Pd(OAc)]2(OTf)2, we were able to demonstrate the selective oxidation of glycerol to dihydroxyacetone mediated by either benzoquinone or O2 as the terminal oxidant, an accomplishment that has little precedent in homogeneous catalysis. Mechanistic studies were undertaken to uncover the nature of this remarkable chemoselectivity. Kinetic and deuterium-labeling studies implicate reversible β-hydride elimination from isomeric Pd alkoxides and turnover-limiting displacement of the dihydroxyacetone product by benzoquinone. We successfully extended this methodology to other terminal 1,2-diols and symmetric vicinal 1,2-diols and have carried out aerobic oxidation of these substrates catalyzed by 1. Examination of the reactivity of 1 with conformationally-restricted 1,2-cyclohexanediols suggests that the diol must chelate to the Pd center for effective oxidation to the hydroxyketone product. In a separate project, we have also investigated the electrocatalytic reduction of dioxygen by several dinuclear copper complexes, an important reaction for fuel cell applications.