Download Free Catalogue Of Earthquakes In India And Neighbourhood Book in PDF and EPUB Free Download. You can read online Catalogue Of Earthquakes In India And Neighbourhood and write the review.

This book presents select proceedings of the 17th Symposium on Earthquake Engineering organized by the Department of Earthquake Engineering, Indian Institute of Technology Roorkee. The topics covered in the proceedings include engineering seismology and seismotectonics, earthquake hazard assessment, seismic microzonation and urban planning, dynamic properties of soils and ground response, ground improvement techniques for seismic hazards, computational soil dynamics, dynamic soil–structure interaction, codal provisions on earthquake-resistant design, seismic evaluation and retrofitting of structures, earthquake disaster mitigation and management, and many more. This book also discusses relevant issues related to earthquakes, such as human response and socioeconomic matters, post-earthquake rehabilitation, earthquake engineering education, public awareness, participation and enforcement of building safety laws, and earthquake prediction and early warning system. This book is a valuable reference for researchers and professionals working in the area of earthquake engineering.
This edited volume is an up-to-date guide for students, policy makers and engineers on earthquake engineering, including methods and technologies for seismic hazard detection and mitigation. The book was written in honour of the late Professor Jai Krishna, who was a pioneer in teaching and research in the field of earthquake engineering in India during his decades-long work at the University of Roorkee (now the Indian Institute of Technology Roorkee). The book comprehensively covers the historical development of earthquake engineering in India, and uses this background knowledge to address the need for current advances in earthquake engineering, especially in developing countries. After discussing the history and growth of earthquake engineering in India from the past 50 years, the book addresses the present status of earthquake engineering in regards to the seismic resistant designs of bridges, buildings, railways, and other infrastructures. Specific topics include response spectrum superposition methods, design philosophy, system identification approaches, retaining walls, and shallow foundations. Readers will learn about developments in earthquake engineering over the past 50 years, and how new methods and technologies can be applied towards seismic risk and hazard identification and mitigation.
This book highlights some of the interesting recent and historical earthquakes (1803 Uttarkashi, 1819 Kutch, 1897 Shillong, 1905 Kangra, 1934 Nepal-Bihar, 1950 Upper Assam, 1967 Koyna, 1993 Killari, 1997 Jabalpur, 2001 Bhuj, 2004 Sumatra-Andaman, 2005 Kashmir, and 2015 Nepal) that occurred in India and in the vicinity. The tectonic and geodynamic significance of the modern (after the advent of global network) earthquakes in relation to some of the historical earthquakes like the 1819 Kachchh and 1897 Shillong and 1934 Nepal-Bihar earthquakes in the light of newer understanding is discussed. It also contains detailed expositions of seismotectonics and mechanisms of each earthquake. It concludes with touching upon future earthquake hazard scenario in India in view of the present and past earthquakes.
This volume is the outcome of about 30 years of research in the field of earthquake seismology in various parts of South Asia. It comprehensively deals with topics raning from plate tectonics to seismic waves in general. State-of-the-art techniques in earthquake location/relocation, fault plane solution, waveform inversion, seismic tomography, fractals etc. are discussed, and the results are interpreted in terms of seismic source processes in the region.
This book presents in a concise format a simplified and coherent geological-dynamical history of the Indian subcontinent (including Sri Lanka, Bangladesh, Myanmar, Southern Tibet and Pakistan). Encompassing a broad array of information related to structure and tectonics, stratigraphy and palaeontology, sedimentation and palaeogeography, petrology and geochemistry, geomorphology and geophysics, it explores the geodynamic developments that took place from the beginning around 3.4 billion years ago to the last about 5,000 years before present. Presented in a distilled form, the observations and deductions of practitioners, this book is meant for teachers, researchers and students of geology, geophysics and geomorphology and practitioners of earth sciences. A comprehensive list of references to original works provides guidance for those seeking further details and who wish to examine selected problems in depth. The book is illustrated with a wealth of maps, cross sections and block diagrams — all simplified and redesigned.
A workshop on Induced Seismicity was organized during the 27th General Assembly of the International Association of Seismology and Physics of Earth's Interior (IASPEI) in Wellington, New Zealand during January 10-21, 1994. This volume presents a collection of 16 papers accepted for publication which accrued from this workshop. The first three papers address mining activity related to induced seismicity. The fourth paper deals with water injection induced seismic activity, while the remaining 12 papers treat several aspects of water reservoir induced earthquakes. Globally, the Koyna dam creating Shivajisagar Lake in Maharashtra, India, continues to be the most significant site of reservoir-induced earthquakes. With the increase in the number of cases of induced seismicity, there is a growing concern among planners, engineers, geophysicists and geologists to understand the environment conducive to this phenomenon. While the changes in pore-fluid pressure have been identified as the key factor in inducing earthquakes, the phenomenon itself is still poorly understood. This reality thus makes the study of the induced seismicity very important and this volume timely.
The two volume International Handbook of Earthquake and Engineering Seismology represents the International Association of Seismology and Physics of the Earth's Interior's (IASPEI) ambition to provide a comprehensive overview of our present knowledge of earthquakes and seismology. This state-of-the-art work is the only reference to cover all aspects of seismology--a "resource library" for civil and structural engineers, geologists, geophysicists, and seismologists in academia and industry around the globe.Part B, by more than 100 leading researchers from major institutions of science around the globe, features 34 chapters detailing strong-motion seismology, earthquake engineering, quake prediction and hazards mitigation, as well as detailed reports from more than 40 nations. Also available is The International Handbook of Earthquake and Engineering Seismology, Part A. - Authoritative articles by more than 100 leading scientists - Extensive glossary of terminology plus 2000+ biographical sketches of notable seismologists
There are few books and long review articles on water reservoir induced seismicity, mining induced seismicity and even on volcanic seismicity but the subjects of induced seismicity following fluid extraction and nuclear explosion and seismicity associated with tidal stress in Earth have not received significant attention though there are research papers in relevant literature. Thus an attempt has been made to discuss all the known forms of induced seismicity in the present book and to bring out common features of the different phenomena causing induced seismicity. The book has six main chapters namely 2, 3, 4, 5, 6 and 7, the first and last chapters, namely 1 and 8 being introduction and overview of all forms of induced seismicity. Material in Chapters 2 and 3 is rather recent though water reservoirs and petroleum extraction processes have been in existence over many decades. But, literature on chapters 4 and 5 is available since last one century or so as volcanic process and mining operation affect nearby human habitation and mining severely due to induced seismicity associated with mining in particular. However, literature on possible induced seismicity due to tidal stress is fairly old, the same following nuclear explosion is naturally recent.