Download Free Carbon Dioxide Storage In Coal Seams With Enhanced Coalbed Methane Recovery Book in PDF and EPUB Free Download. You can read online Carbon Dioxide Storage In Coal Seams With Enhanced Coalbed Methane Recovery and write the review.

Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction. - Foreword written by Lord Oxburgh, Climate Science Peer - Comprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisation - Reviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.
Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS
Coal Bed Methane: From Prospect to Pipeline is the proceedings of the 25th anniversary of the North American Coal Bed Methane Forum. It provides the latest advancements in the production of coal bed methane covering a variety of topics, from exploration to gas processing, for commercial utilization. Additionally, it presents the origin of gas in coal, reservoir engineering, control of methane in coal mines, production techniques, water management, and gas processing. The vast coal resources in the United States continue to produce tremendous amounts of natural gas, contributing to a diverse range energy assets. Following a rapid advancement and subsequent plateau in technological developments, this book captures the full life cycle of a well and offers petroleum geologists and engineers a single source of a broad range of coal bed methane applications. This book addresses crucial technical topics, including exploration and evaluation of coal bed reservoirs; hydraulic fracturing of CBM wells; coal seam degasification; and production engineering and processing, among others. It also covers legal issues, permitting, and economic analysis of CBM projects. - Edited by a team of coal bed methane experts from industry, academia and government who have more than 75 years of combined experience in the field - Authored by well-recognized members of the gas and coal industry, universities, US government departments, such as the Department of Energy and the National Institute of Occupational Safety and Health (NIOSH) - More than 200 figures, photographs, and illustrations aid in the understanding of the fundamental concepts - Presents the full scope of improvements in US energy independence, coal mine safety, and greenhouse gas emissions
Carbon Capture and Storage, Second Edition, provides a thorough, non-specialist introduction to technologies aimed at reducing greenhouse gas emissions from burning fossil fuels during power generation and other energy-intensive industrial processes, such as steelmaking. Extensively revised and updated, this second edition provides detailed coverage of key carbon dioxide capture methods along with an examination of the most promising techniques for carbon storage. The book opens with an introductory section that provides background regarding the need to reduce greenhouse gas emissions, an overview of carbon capture and storage (CCS) technologies, and a primer in the fundamentals of power generation. The next chapters focus on key carbon capture technologies, including absorption, adsorption, and membrane-based systems, addressing their applications in both the power and non-power sectors. New for the second edition, a dedicated section on geological storage of carbon dioxide follows, with chapters addressing the relevant features, events, and processes (FEP) associated with this scenario. Non-geological storage methods such as ocean storage and storage in terrestrial ecosystems are the subject of the final group of chapters. A chapter on carbon dioxide transportation is also included. This extensively revised and expanded second edition will be a valuable resource for power plant engineers, chemical engineers, geological engineers, environmental engineers, and industrial engineers seeking a concise, yet authoritative one-volume overview of this field. Researchers, consultants, and policy makers entering this discipline also will benefit from this reference. - Provides all-inclusive and authoritative coverage of the major technologies under consideration for carbon capture and storage - Presents information in an approachable format, for those with a scientific or engineering background, as well as non-specialists - Includes a new Part III dedicated to geological storage of carbon dioxide, covering this topic in much more depth (9 chapters compared to 1 in the first edition) - Features revisions and updates to all chapters - Includes new sections or expanded content on: chemical looping/calcium looping; life-cycle GHG assessment of CCS technologies; non-power industries (e.g. including pulp/paper alongside ones already covered); carbon negative technologies (e.g. BECCS); gas-fired power plants; biomass and waste co-firing; and hydrate-based capture
Coal Bed Methane: Theories and Applications, Second Edition, captures the full lifecycle of a coal bed methane well and offers petroleum geologists and engineers a single source for a broad range of coal bed methane (CBM) applications. The vast coal resources in the United States continue to produce tremendous amounts of natural gas, contributing to a diverse range of energy assets. This book addresses crucial technical topics, including exploration and evaluation of coal bed reservoirs, hydraulic fracturing of CBM wells, coal seam degasification, and production engineering and processing, among others. The book also covers legal issues and permitting, along with an economic analysis of CBM projects. This new edition includes information on new and established research and applications, making it relevant for field geologists and engineers, as well as students.
This report was produced under the Technical Assistance Grant: Determining the Potential for Carbon Capture and Storage (CCS) in Southeast Asia (TA 7575-REG), and is focused on an assessment of the CCS potential in Thailand, Viet Nam, and specific regions of Indonesia (South Sumatra) and the Philippines (Calabarzon). It contains inventories of carbon dioxide emission sources, estimates of overall storage potential, likely source-sink match options for potential CCS projects, and an analysis of existing policy, legal, and regulatory frameworks with a view toward supporting future CCS operations. The report also presents a comparative financial analysis of candidate CCS projects, highlights possible incentive schemes for financing CCS, and provides an actionable road map for pilot, demonstration, and commercial CCS projects.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.