Download Free Carbon Based Nanomaterials In Biosystems Book in PDF and EPUB Free Download. You can read online Carbon Based Nanomaterials In Biosystems and write the review.

Carbon-Based Nanomaterials in Biosystems: Biophysical interface at Lower Dimensions provides a thoroughly comprehensive overview of all major aspects of carbon-based nanomaterials, their biophysical response, and biotechnological application. The book articulates the underlying physics, chemistry, and the basic phenomenon of the broad-range carbon-based nanomaterials (CNMs) with the biological systems particularly the interface analysis. Organized in six sections, it discusses state-of art technological interventions of carbon-based nanomaterials and their application in biomedical sectors in healthcare, food sciences, and technology. The book also highlights the carrying capacity of different CNMs in payload efficiency mechanisms in various biomedical fields. The theranostic efficiency and the safety of various forms of CNMs is assessed. Carbon-Based Nanomaterials in Biosystems is a helpful resource to those specializing in the areas of nanomedicine, bionanomaterials and nanotechnology applications. - Covers major breakthroughs in carbon nanomaterials (CNMs) - Distinguishes between the advantages and disadvantages of carbon-based and non-carbon-based nanomaterials - Discusses the significance of different forms of carbon nanomaterials and their unique physico-chemical and electrochemical properties at the lower dimension - Examines the appropriate methodologies for tackling safety and health-related matters while using carbon-based nanomaterials - Discusses recent developments of various forms of carbon-based nanomaterials such as graphene, carbon nanotubes, fullerenes, and carbon nano-onions
This new volume explores the integration of bionanomaterials and sustainable resources for the development of new and emerging sustainable processes. It highlights the concept of essential bionanomaterials derived from sustainable resources with examples of interdisciplinary methodologies and research that highlight the reuse of biomass waste as well as the proper usage of green technologies. The volume considers the most recent trends, challenges, and applications in bionanomaterials derived from sustainable sources in energy production and environmental mitigation. The book looks at state-of-the-art trends in the use of bionanomaterials for renewable energy such as in production of solar energy, for energy harvesting, and for energy conversion and storage. Chapters consider the application of bionanomaterials for the development of improved optical and electrical biosensors. The volume goes on to address the promising use of bionanomaterials for environmental remediation, such as for recovering heavy metals, radioactive metals, and other pollutants from wastewater, from river water, from soils, etc. Other topics include the use of sustainable nanomaterials in the food industry, in the biomedical field, in ecological research, and more.
The book gives an insight into the theoretical background, conceptual understanding, latest developments, and applications in the field of pharmaceuticals in general and drug design, discovery, biosystems, and biomedical and drug delivery technologies in particular. Knowledge is drawn from various disciplines such as Chemistry, Biology, Material Science and Engineering, Statistics, Biomedicine, and Genetics . A host of applications like bio-imaging, novel biological agents, testing, characterization and validation of drugs, computer-based models in drug design, and application of statistical tools in data analysis, design, and development of drug delivery systems, and ecosystems are dealt with in detail. The said book undoubtedly confirms the requirements of the postgraduate students, research scholars, academicians, scientists, and researchers from the academia, pharmaceutical, biotechnology, and chemical engineering domain. The book covers a conceptual understanding of the exploration of drugs in tandem with intended uses, sound ecosystem development, and carriers for drug and supplement delivery.
Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications
"There’s plenty of room at the bottom" - Richard Feynman’s legendary sentence has practically teleported the world into the age of Nano-technology over the last couple of decades. As nano-materials started drawing extensive attention, the use of nano-technology has opened many possibilities for humans. Carbon based nano-materials are an example of such prominent class of materials, which have an enormous potential to fit a wide range of applications, ranging from the energy sector to aircraft and automotive sector to bio-medical sector, etc. The book Novel Applications of Carbon Based Nano-Materials summarizes state-of-the-art studies focusing on various applications of carbon allotropes, considering the energy and environmental benefits and the socio-economic impact of the developed systems, all at the same time.
In recent decades nanotechnology has developed into a highly multidisciplinary topic, drawing from a number of fields such as physics, materials science, biomedicine, and different engineering disciplines. The success of nanoscience- and nanotechnology-related research and products is connected with the technological exploitation of size effects in
Environmental Applications of Carbon Nanomaterials-Based Devices Explore this insightful treatment of the function and fabrication of high-performance devices for environmental applications Environmental Applications of Carbon Nanomaterials-Based Devices delivers an overview of state-of-the-art technology in functionalized carbon nanomaterials-based devices for environmental applications. The book provides a powerful foundation, based in materials science, on functionalized carbon nanomaterials in general, and environmental science and device fabrication in particular. The book focuses on the chemical and physical methods of functionalization of carbon nanomaterials and the technology of device fabrication, including lab-on-a-chip approaches and applications such as wastewater purification and gas sensing. It provides readers with a thorough understanding of effective environmental remediation techniques performed with carbon nanomaterials-based devices. In addition to topics such as cross-linked graphene oxide membranes assembled with graphene oxide nanosheets, free-standing graphene oxide-chitin nanocrystal composite membranes for dye adsorption and oil/water separation, and in-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation, readers will also benefit from the inclusion of: A thorough introduction to charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes An exploration of hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination A discussion of the incorporation of attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment An examination of attapulgite nanofibers and graphene oxide composite membranes for high-performance molecular separation Perfect for materials scientists, analytical chemists, and environmental chemists, Environmental Applications of Carbon Nanomaterials-Based Devices will also earn a place in the libraries of sensor developers seeking a one-stop resource for high-performance devices and sensors useful for environmental applications.
Bio-Inspired Nanotechnology focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. It summarizes recent developments in biocompatible and biodegradable materials, including their properties, fabrication methods, synthesis protocols, and applications. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and unique applications of such biomimetic materials in harvesting/storage, biomedical diagnostics, and materials assembly. The book chapters also cover a range of available bio-based nanomaterials, including chitin, starch and nanocellulose. It serves as a detailed reference for learners and anyone interested in sustainable nanoscale materials, including materials scientists, biomedical engineers, environmental scientists, food and agriculture manufacturers and scientists.
Functionalized Nanomaterials for Cancer Research: Applications in Treatments, Tools and Devices presents an in-depth and step by step description of knowledge on functionalized nanomaterials for cancer research, including treatment and future developments as well as their impact on patients' overall outcomes. The book discusses the functionalized nanoplatforms for cancer detection and imaging, interactions between nanomaterials and cancer cells, and drug resistant malignancies. The chapters are organized in a manner that can be readily adopted as sources for new and further studies by highlighting the main in vitro and in vivo nano-therapeutic achievements on cancer. Additionally, current trends on functionalized nanomaterials for cancer research and commercial scale opportunities are discussed. It is a valuable resource for researchers, oncologists, students, and members of the biomedical and medical fields who want to learn more about the potential of nanotechnology in cancer research and treatment. - Provides comprehensive coverage on functionalized nanomaterials for cancer therapeutics and future developments - Explores current trends on functionalized nanomaterials for cancer research and commercial scale opportunities - Discusses real-world case studies on functionalized nanomaterials for cancer therapy and research
In this volume, Prof. Ye and his coworkers propose and review the concept of nano-bio probe design for biochemical analysis on the basis of their recent published works. A unique biochemical analysis technology based on fluorescence polarization enhanced by nanoparticles is described here with successful applications in environmental monitoring, rapid and sensitive sensing protease activity and high-throughput screening of inhibitors. Furthermore, they introduce a versatile molecular beacon (MB)-like probe for the multiplex sensing of targets such as sequence-specific DNA, protein, metal ions and small molecule compounds based on the self-assembled biomolecule-graphene conjugates. Besides, some colorimetric and luminescence probes utilizing metal nanoparticles for biochemical applications are also presented, such as chiral enantiomer discrimination and separation, environmental monitoring, clinic diagnosis and etc.