Download Free Capturing Change In Science Technology And Innovation Book in PDF and EPUB Free Download. You can read online Capturing Change In Science Technology And Innovation and write the review.

Since the 1950s, under congressional mandate, the U.S. National Science Foundation (NSF) - through its National Center for Science and Engineering Statistics (NCSES) and predecessor agencies - has produced regularly updated measures of research and development expenditures, employment and training in science and engineering, and other indicators of the state of U.S. science and technology. A more recent focus has been on measuring innovation in the corporate sector. NCSES collects its own data on science, technology, and innovation (STI) activities and also incorporates data from other agencies to produce indicators that are used for monitoring purposes - including comparisons among sectors, regions, and with other countries - and for identifying trends that may require policy attention and generate research needs. NCSES also provides extensive tabulations and microdata files for in-depth analysis. Capturing Change in Science, Technology, and Innovation assesses and provides recommendations regarding the need for revised, refocused, and newly developed indicators of STI activities that would enable NCSES to respond to changing policy concerns. This report also identifies and assesses both existing and potential data resources and tools that NCSES could exploit to further develop its indicators program. Finally, the report considers strategic pathways for NCSES to move forward with an improved STI indicators program. The recommendations offered in Capturing Change in Science, Technology, and Innovation are intended to serve as the basis for a strategic program of work that will enhance NCSES's ability to produce indicators that capture change in science, technology, and innovation to inform policy and optimally meet the needs of its user community.
Since the 1950s, under congressional mandate, the U.S. National Science Foundation (NSF) - through its National Center for Science and Engineering Statistics (NCSES) and predecessor agencies - has produced regularly updated measures of research and development expenditures, employment and training in science and engineering, and other indicators of the state of U.S. science and technology. A more recent focus has been on measuring innovation in the corporate sector. NCSES collects its own data on science, technology, and innovation (STI) activities and also incorporates data from other agencies to produce indicators that are used for monitoring purposes - including comparisons among sectors, regions, and with other countries - and for identifying trends that may require policy attention and generate research needs. NCSES also provides extensive tabulations and microdata files for in-depth analysis. Capturing Change in Science, Technology, and Innovation assesses and provides recommendations regarding the need for revised, refocused, and newly developed indicators of STI activities that would enable NCSES to respond to changing policy concerns. This report also identifies and assesses both existing and potential data resources and tools that NCSES could exploit to further develop its indicators program. Finally, the report considers strategic pathways for NCSES to move forward with an improved STI indicators program. The recommendations offered in Capturing Change in Science, Technology, and Innovation are intended to serve as the basis for a strategic program of work that will enhance NCSES's ability to produce indicators that capture change in science, technology, and innovation to inform policy and optimally meet the needs of its user community.
Because of the role of innovation as a driver of economic productivity and growth and as a mechanism for improving people's well-being in other ways, understanding the nature,determinants, and impacts of innovation has become increasingly important to policy makers. To be effective, investment in innovation requires this understanding, which, in turn, requires measurement of the underlying inputs and subsequent outcomes of innovation processes. In May 2016, at the request of the National Center for Science and Engineering Statistics of the National Science Foundation, the Committee on National Statistics of the National Academies of Sciences, Engineering, and Medicine convened a workshop - bringing together academic researchers, private and public sector experts, and representatives from public policy agencies - to develop strategies for broadening and modernizing innovation information systems.This publication summarizes the presentation and discussion of the event.
Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction. - Foreword written by Lord Oxburgh, Climate Science Peer - Comprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisation - Reviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
This report contains the proceedings of a one-day workshop organized by the National Research Council's Board on Science, Technology, and Economic Policy (STEP), in conjunction with a study by a panel of the NRC Committee on National Statistics (CNSTAT). This combined activity was commissioned by the Science Resources Statistics Division (SRS) of the National Science Foundation (NSF) to recommend improvements in the Foundation's portfolio of surveys of research and development spending by the federal government, state governments, private industry, the nation's universities and colleges, and other nonprofit institutions.
The National Science Foundation's National Center for Science and Engineering Statistics (NCSES), one of the nation's principal statistical agencies, is charged to collect, acquire, analyze, report, and disseminate statistical data related to the science and engineering enterprise in the United States and other nations that is relevant and useful to practitioners, researchers, policymakers, and to the public. NCSES data, based primarily on several flagship surveys, have become the major evidence base for American science and technology policy, and the agency is well respected globally for these data. This report assesses and provides guidance on NCSES's approach to measuring the science and engineering workforce population in the United States. It also proposes a framework for measuring the science and engineering workforce in the next decade and beyond, with flexibility to examine emerging issues related to this unique population while at the same time allowing for stability in the estimation of key trends
This book explores why widespread predictions of the radical transformation in the recording industry did not materialise. Although the growing revenue generated from streaming signals the recovery of the digital music business, it is important to ask to what extent is the current development a response to digital innovation. Hyojung Sun finds the answer in the detailed innovation process that has taken place since Napster. She reassesses the way digital music technologies were encultured in complex music valorisation processes and demonstrates how the industry has become reintermediated rather than disintermediated. This book offers a new understanding of digital disruption in the recording industry. It captures the complexity of the innovation processes that brought about technological development, which arose as a result of interaction across the circuit of the recording business – production, distribution, valorisation, and consumption. By offering a more sophisticated account than the prevailing dichotomy, the book exposes deterministic myths surrounding the radical transformation of the industry.
Because of the role of innovation as a driver of economic productivity and growth and as a mechanism for improving people's well-being in other ways, understanding the nature,determinants, and impacts of innovation has become increasingly important to policy makers. To be effective, investment in innovation requires this understanding, which, in turn, requires measurement of the underlying inputs and subsequent outcomes of innovation processes. In May 2016, at the request of the National Center for Science and Engineering Statistics of the National Science Foundation, the Committee on National Statistics of the National Academies of Sciences, Engineering, and Medicine convened a workshop - bringing together academic researchers, private and public sector experts, and representatives from public policy agencies - to develop strategies for broadening and modernizing innovation information systems.This publication summarizes the presentation and discussion of the event.
This monograph surveys the current state of the art including the concept of indicators, their quality and use, and a schematic model of the STI system that can identify gaps in the set of indicators commonly in use.