Download Free California Air Quality Data For Book in PDF and EPUB Free Download. You can read online California Air Quality Data For and write the review.

The main objective of these updated global guidelines is to offer health-based air quality guideline levels, expressed as long-term or short-term concentrations for six key air pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In addition, the guidelines provide interim targets to guide reduction efforts of these pollutants, as well as good practice statements for the management of certain types of PM (i.e., black carbon/elemental carbon, ultrafine particles, particles originating from sand and duststorms). These guidelines are not legally binding standards; however, they provide WHO Member States with an evidence-informed tool, which they can use to inform legislation and policy. Ultimately, the goal of these guidelines is to help reduce levels of air pollutants in order to decrease the enormous health burden resulting from the exposure to air pollution worldwide.
Managing the nation's air quality is a complex undertaking, involving tens of thousands of people in regulating thousands of pollution sources. The authors identify what has worked and what has not, and they offer wide-ranging recommendations for setting future priorities, making difficult choices, and increasing innovation. This new book explores how to better integrate scientific advances and new technologies into the air quality management system. The volume reviews the three-decade history of governmental efforts toward cleaner air, discussing how air quality standards are set and results measured, the design and implementation of control strategies, regulatory processes and procedures, special issues with mobile pollution sources, and more. The book looks at efforts to spur social and behavioral changes that affect air quality, the effectiveness of market-based instruments for air quality regulation, and many other aspects of the issue. Rich in technical detail, this book will be of interest to all those engaged in air quality management: scientists, engineers, industrial managers, law makers, regulators, health officials, clean-air advocates, and concerned citizens.
Transportation conformity is required under the Clean Air Act (CAA) Section 176(c) to ensure that Federally-supported transportation activities are consistent with (“conform to”) the purpose of a State Implementation Plan (SIP). Transportation conformity establishes the framework for improving air quality to protect public health and the environment. Conformity to the purpose of the SIP means Federal Highway Administration (FHWA) and Federal Transit Administration (FTA) funding and approvals are given to highway and transit activities that will not cause new air quality violations, worsen existing air quality violations, or delay timely attainment of the relevant air quality standard, or any interim milestone. This Guide was prepared to help State and local officials understand transportation conformity and how conformity requirements relate to transportation investments in their communities. Specifically, the implications of conformity on metropolitan transportation plans, transportation improvement programs (TIPs), and transportation projects are discussed. The Guide provides overview information on the major elements of the conformity process and provides answers to basic questions. Several exhibits are included in the Guide to illustrate key elements of the conformity process. Appendices are also included that discuss the health effects of pollutants, options to reduce on-road mobile source emissions, and resource agency contacts.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
Urban areas are major sources of air pollution. Pollutant emissions affecting air quality in cities are considered to have adverse consequences for human health. Public and government concern about environmental issues arising from urban air pollution has increased over the last decades. The urban air pollution problem is widespread throughout the world and it is important to find ways of eliminating or at least reducing the risks for human health. The fundamentals of the physical and chemical processes occurring during air pollutant transport in the atmosphere are nowadays understood to a large extent. In particular, modelling of such processes has experienced a remarkable growth in the last decades. Monitoring capabilities have also improved markedly in the most urban areas around the world. However, neither modelling nor monitoring can solve urban air pollution problems, as they are only a first step in improving useful information for future regulations. The defining of efficient control strategies can not be achieved without a clear knowledge of the complete pollution process, i.e. emission, atmospheric transport and transformation, and deposition at the receptor. Improving our ability to establish valid urban scale source-receptor relation ships has been the objective of SA TURN, one of the 14 subprojects of EURO TRAC-2. Similar to the other subprojects of this co-ordinated environmental pro ject within the EUREKA initiative, SA TURN brought together international groups of scientists to work on problems directly related to atmospheric chemistry and physics. The present volume summarises the scientific results of SATURN.