Download Free Calibration Of Prediction Models For Remaining Life Of Flexible Pavements In Arkansas Book in PDF and EPUB Free Download. You can read online Calibration Of Prediction Models For Remaining Life Of Flexible Pavements In Arkansas and write the review.

A software program has been developed to predict the remaining life of flexible pavements using artificial neural network (ANN) technology. The remaining life due to either rutting or fatigue cracking can be predicted. The inputs to the software are the best estimate of the thickness of the layers, the deflection basin measured with a falling weight deflectometer (FWD), and optionally, the extent of damage at the time of the FWD test. The outputs are the best estimate of the remaining life and the pavement performance curve. If uncertainty in the thicknesses, FWD measurements and traffic exists, a probabilistic description of the remaining life is also provided. The main benefit of the proposed approach is that the backcalculation process for determining moduli is not necessary. The remaining lives or alternatively the critical stresses needed to calculate them are directly estimated. As such, the results seem to be more robust. In this paper, the overall procedure and the details of the methodology followed in developing the software are described. A case study is included to demonstrate the application of the methodology.
Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.
Innovations in Road, Railway and Airfield Bearing Capacity - Volume 1 comprises the first part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field.
A result of the Strategic Highway Research Program's asphalt research is the development of performance-based specifications for asphalt binders and mixtures to control 3 distress modes: rutting; fatigue cracking; and thermal cracking. The SHRP A-005 project developed detailed pavement performance models to support these binder and mixture specifications and performance-based mixture designs. This report documents the findings of this extensive research effort and provides supporting data for the performance-based specifications and mixture design procedure called SUPERPAVE. The A-005 contract developed and used a sophisticated, mechanistic-based pavement performance model to define the relationships between asphalt binder and mixture properties and pavement distress. A comprehensive pavement performance model was developed that predicts the amount of fatigue cracking, thermal cracking and rutting in asphalt concrete pavements with time, using results from the accelerated laboratory tests. The pavement performance models for each distress were also used to confirm the relevant binder and mixture properties established by other SHRP contractors. The model has 3 parts: a mixture evaluation model; a pavement response model; and a pavement distress model.
This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.
Emphasizing sound, cost-effective management rather than emergency repairs, this comprehensive volume offers practical guidelines on evaluating and managing pavements for airports, roads, and parking lots. The author focuses on the implementation and maintenance of successful management strategies for both network and project levels, with repair techniques also described . Detailed chapters: 1) outline step-by-step procedures for project and network level pavement management 2) illustrate effective cost analysis and budget planning for pavement maintenance 3) guide the reader in the selection and use of non-destructive deflection, roughness measurement, and friction measurement equipment 4) present state-of-the-art pavement rehabilitation and condition prediction techniques 5) demonstrates the Pavement Condition Index (PCI) procedure for airfields and surfaced and unsurfaced roads. Extensive appendices serve as a field manual for identifying all types of pavement distress and their causes, and hundred of photographs facilitate accurate pavement evaluation. Civil and pavement engineers will find complete information on pavement inspection, evaluation, and management in this indispensable reference.