Download Free Calibration Of Geosynchronous Satellite Video Sensors Book in PDF and EPUB Free Download. You can read online Calibration Of Geosynchronous Satellite Video Sensors and write the review.

Volume I of the Six Volume Remote Sensing Handbook, Second Edition, is focused on satellites and sensors including radar, light detection and ranging (LiDAR), microwave, hyperspectral, unmanned aerial vehicles (UAVs), and their applications. It discusses data normalization and harmonization, accuracies, and uncertainties of remote sensing products, global navigation satellite system (GNSS) theory and practice, crowdsourcing, cloud computing environments, Google Earth Engine, and remote sensing and space law. This thoroughly revised and updated volume draws on the expertise of a diverse array of leading international authorities in remote sensing and provides an essential resource for researchers at all levels interested in using remote sensing. It integrates discussions of remote sensing principles, data, methods, development, applications, and scientific and social context. FEATURES Provides the most up-to-date comprehensive coverage of remote sensing science. Discusses and analyzes data from old and new generations of satellites and sensors. Provides comprehensive methods and approaches for remote sensing data normalization, standardization, and harmonization. Includes numerous case studies on advances and applications at local, regional, and global scales. Introduces advanced methods in remote sensing such as machine learning, cloud computing, and AI. Highlights scientific achievements over the last decade and provides guidance for future developments. This volume is an excellent resource for the entire remote sensing and GIS community. Academics, researchers, undergraduate and graduate students, as well as practitioners, decision-makers, and policymakers, will benefit from the expertise of the professionals featured in this book, and their extensive knowledge of new and emerging trends.
A volume in the three-volume Remote Sensing Handbook series, Remote Sensing of Water Resources, Disasters, and Urban Studies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Remotely Sensed Data Characterization, Classification, and Accuracies, and Land Reso
A volume in the Remote Sensing Handbook series, Remotely Sensed Data Characterization, Classification, and Accuracies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, and Remote Sensing of
This report describes the development and testing of an objective technique to forecast cloudiness and precipitation through extrapolation of satellite imagery. By utilizing on objectively determined cloud-motion vector, the technique makes local forecasts of satellite parameters (brightness and IR temperature), with high temporal resolution, using simple linear extrapolation. Algorithms are then used to convert the satellite parameters to total cloud cover, probability of 1-hour precipitation, and presence of low, middle, and high clouds. The test program computed motion vectors and made forecasts out to 7 hours, in half-hour steps, at 30 locations. The program was tested on 12 spring and fall cases, using half-hourly GOES imagery. For periods beyond 2 hours, forecasts of cloud cover and precipitation were markedly better than persistence, which deficiencies in specification hindered short-period performance. Forecasts of cloud layers were worse than persistence due to inadequate specification algorithms. The net results were quite encouraging, and further refinements and developments are planned.
"In sum, I believe that every organization active in remote sensing will find Dr. Kramer's book to be an essential addition to its technical library, and I believe that every serious practitioner of remote sensing will find it a permanently useful and vital reference." John H. McElroy, Dean of Engineering, The University of Texas and Chair of the Committee on Earth studies of the U.S. National Research Council's Space Studies Board)