Download Free Calculus Explorations With Mathematica Book in PDF and EPUB Free Download. You can read online Calculus Explorations With Mathematica and write the review.

Animating Calculus is designed to help you explore calculus and visualize concepts through the use of computation and animation. This collection of 22 labs, together with the computer algebra system Mathematica, can be used for self-study, demonstration, or as a laboratory supplement to an existing calculus sequence. Standard calculus topics as well as new and unusual extensions and applications are presented, including derivatives and rate of change, calculus and landing airplanes, population dynamics and iteration, the fundamental theorem, The Buffon needle problem, numerical and symbolic integration, rolling wheels (round and square), subtleties of the harmonic series, and more. Animating Calculus includes exercises and demonstrations that focus on important and fundamental ideas and applications rather than the everyday mechanics of a computer algebra system. Sophisticated animations are used to clarify geometric concepts in calculus. In addition, discussions of numerical and graphical pitfalls help the student to understand the importance of verifying results. Originally published by W. H. Freeman, this new TELOS edition of Animating Calculus includes the full set of labs for DOS/Windows as well as Macintosh platforms.
"Mathematica in Action, 2nd Edition," is designed both as a guide to the extraordinary capabilities of Mathematica as well as a detailed tour of modern mathematics by one of its leading expositors, Stan Wagon. Ideal for teachers, researchers, mathematica enthusiasts. This second edition of the highly sucessful W.H. Freeman version includes an 8 page full color insert and 50% new material all organized around Elementary Topics, Intermediate Applications, and Advanced Projects. In addition, the book uses Mathematica 3.0 throughtout. Mathematica 3.0 notebooks with all the programs and examples discussed in the book are available on the TELOS web site (www.telospub.com). These notebooks contain materials suitable for DOS, Windows, Macintosh and Unix computers. Stan Wagon is well-known in the mathematics (and Mathematica) community as Associate Editor of the "American Mathematical Monthly," a columnist for the "Mathematical Intelligencer" and "Mathematica in Education and Research," author of "The Banach-Tarski Paradox" and "Unsolved Problems in Elementary Geometry and Number Theory (with Victor Klee), as well as winner of the 1987 Lester R. Ford Award for Expository Writing.
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
This upper-division laboratory supplement for courses in abstract algebra consists of several Mathematica packages programmed as a foundation for group and ring theory. Additionally, the "user's guide" illustrates the functionality of the underlying code, while the lab portion of the book reflects the contents of the Mathematica-based electronic notebooks. Students interact with both the printed and electronic versions of the material in the laboratory, and can look up details and reference information in the user's guide. Exercises occur in the stream of the text of the lab, which provides a context within which to answer, and the questions are designed to be either written into the electronic notebook, or on paper. The notebooks are available in both 2.2 and 3.0 versions of Mathematica, and run across all platforms for which Mathematica exits. A very timely and unique addition to the undergraduate abstract algebra curriculum, filling a tremendous void in the literature.
Enables teachers to learn the history of mathematics and then incorporate it in undergraduate teaching.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
The book introduces complex analysis as a natural extension of the calculus of real-valued functions. The mechanism for doing so is the extension theorem, which states that any real analytic function extends to an analytic function defined in a region of the complex plane. The connection to real functions and calculus is then natural. The introduction to analytic functions feels intuitive and their fundamental properties are covered quickly. As a result, the book allows a surprisingly large coverage of the classical analysis topics of analytic and meromorphic functions, harmonic functions, contour integrals and series representations, conformal maps, and the Dirichlet problem. It also introduces several more advanced notions, including the Riemann hypothesis and operator theory, in a manner accessible to undergraduates. The last chapter describes bounded linear operators on Hilbert and Banach spaces, including the spectral theory of compact operators, in a way that also provides an excellent review of important topics in linear algebra and provides a pathway to undergraduate research topics in analysis. The book allows flexible use in a single semester, full-year, or capstone course in complex analysis. Prerequisites can range from only multivariate calculus to a transition course or to linear algebra or real analysis. There are over one thousand exercises of a variety of types and levels. Every chapter contains an essay describing a part of the history of the subject and at least one connected collection of exercises that together comprise a project-level exploration.
The unique feature of this compact student's introduction to Mathematica® and the Wolfram LanguageTM is that the order of the material closely follows a standard mathematics curriculum. As a result, it provides a brief introduction to those aspects of the Mathematica® software program most useful to students. Used as a supplementary text, it will help bridge the gap between Mathematica® and the mathematics in the course, and will serve as an excellent tutorial for former students. There have been significant changes to Mathematica® since the second edition, and all chapters have now been updated to account for new features in the software, including natural language queries and the vast stores of real-world data that are now integrated through the cloud. This third edition also includes many new exercises and a chapter on 3D printing that showcases the new computational geometry capabilities that will equip readers to print in 3D.