Download Free Business Intelligence And Data Warehousing Simplified Book in PDF and EPUB Free Download. You can read online Business Intelligence And Data Warehousing Simplified and write the review.

This book targets business and IT professionals who need an introduction to business intelligence and data warehousing through a simple question/answer format. Organized into 30 odd chapters, each on a different topic, the book contains approximately 500 questions with answers and tips. Topics include evolution and fundamentals, characteristics and process, architecture and objects, metadata, data conversion, ETL, data storage, infrastructure, data access, data marts, implementation approaches, planning, design, Inmon vs. Kimball, multi-dimensionality, OLAP, facts and dimensions, common mistakes and tips, etc. The book can also be used as a supplemental textbook, for various data warehousing/business intelligence courses.
This book targets business and IT professionals who need an introduction to business intelligence and data warehousing fundamentals through a simple question / answer format. Topics include evolution and fundamentals, characteristics and process, architecture and objects, metadata, data conversion, ETL, data storage, infrastructure, data access, data marts, implementation approaches, planning, design, Inmon vs. Kimball, multi-dimensionality, OLAP, facts and dimensions, common mistakes and tips, trends, etc.
Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
You have to make sense of enormous amounts of data, and while the notion of "agile data warehousing might sound tricky, it can yield as much as a 3-to-1 speed advantage while cutting project costs in half. Bring this highly effective technique to your organization with the wisdom of agile data warehousing expert Ralph Hughes. Agile Data Warehousing Project Management will give you a thorough introduction to the method as you would practice it in the project room to build a serious "data mart. Regardless of where you are today, this step-by-step implementation guide will prepare you to join or even lead a team in visualizing, building, and validating a single component to an enterprise data warehouse. - Provides a thorough grounding on the mechanics of Scrum as well as practical advice on keeping your team on track - Includes strategies for getting accurate and actionable requirements from a team's business partner - Revolutionary estimating techniques that make forecasting labor far more understandable and accurate - Demonstrates a blends of Agile methods to simplify team management and synchronize inputs across IT specialties - Enables you and your teams to start simple and progress steadily to world-class performance levels
Decision Support and Business Intelligence Systems provides the only comprehensive, up-to-date guide to today's revolutionary management support system technologies, and showcases how they can be used for better decision-making. The 10th edition focuses on Business Intelligence (BI) and analytics for enterprise decision support in a more streamlined book.
Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
Open Source Data Warehousing and Business Intelligence is an all-in-one reference for developing open source based data warehousing (DW) and business intelligence (BI) solutions that are business-centric, cross-customer viable, cross-functional, cross-technology based, and enterprise-wide. Considering the entire lifecycle of an open source DW &
B> This book is widely known for its comprehensive treatment of decision support theory and how it is applied. Through four editions, this book has defined the course and set the standard for up-to-date coverage of the latest decision support theories and practices by managers and organizations. This fifth edition has been streamlined and updated throughout to reflect new computing technologies. Chapter 9 has been completely rewritten to focus on the Internet and Intranet. The reader will find expanded coverage of data warehousing, data mining, on-line analytical processes, and an entirely new chapter on intelligent agents (Ch. 19). Internet related topics and links to Internet exercises and cases appear throughout the new edition.
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.