Download Free Building The Global Hydrogen Economy Book in PDF and EPUB Free Download. You can read online Building The Global Hydrogen Economy and write the review.

This book highlights the opportunities and the challenges of introducing hydrogen as alternative transport fuel from an economic, technical and environmental point of view. Through its multi-disciplinary approach the book provides researchers, decision makers and policy makers with a solid and wide-ranging knowledge base concerning the hydrogen economy.
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.
The road to global security," writes Jeremy Rifkin, "lies in lessening our dependence on Middle East oil and making sure that all people on Earth have access to the energy they need to sustain life. Weaning the world off oil and turning it toward hydrogen is a promissory note for a safer world." Rifkin's international bestseller The Hydrogen Economy presents the clearest, most comprehensive case for moving ourselves away from the destructive and waning years of the oil era toward a new kind of energy regime. Hydrogen-one of the most abundant substances in the universe-holds the key, Rifkin argues, to a cleaner, safer, and more sustainable world.
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.
There is no need in the 1970s to explain the writing of a book on "Environmen tal Chemistry. " The despoliation of the environment by man's activities has long been clear to chemists. However, it has been the subject of public debate for a short time-since the late 1960s. Curiously, there has been little reaction in the textbook literature to reflect this concern. Apart from some brief and sketchy paperbacks for schools, there has not yet been published a substantial review of environmental chemistry. One reason for this is the breadth of the chemistry involved: it could scarcely be covered by one or two authors, for it is as wide as chemistry itself. The ideal way to write such a book would be to gather a couple of dozen authors in one place and keep them together for 6 months of discussions and writing. This not being very practical, it was decided to do the next best thing and to attempt to network a number of men together in mutual correspondence and interaction, which would lead to a book that had the advantages of the expertise of a large number of persons, and lacked many of the usual disadvan tages of the multi author book. Thus, synopses of the various articles were sent to each author, and they were encouraged to interact with each other in attempting to avoid repetition and in keeping their symbols uniform and their presentation style coordinated.
Fuel Cells and Hydrogen: From Fundamentals to Applied Research provides an overview of the basic principles of fuel cell and hydrogen technology, which subsequently allows the reader to delve more deeply into applied research. In addition to covering the basic principles of fuel cells and hydrogen technologies, the book examines the principles and methods to develop and test fuel cells, the evaluation of the performance and lifetime of fuel cells and the concepts of hydrogen production. Fuel Cells and Hydrogen: From Fundamentals to Applied Research acts as an invaluable reference book for fuel cell developers and students, researchers in industry entering the area of fuel cells and lecturers teaching fuel cells and hydrogen technology. - Includes laboratory methods for fuel cell characterization and manufacture - Outlines approaches in modelling components, cells and stacks - Covers practical and theoretical methods for hydrogen production and storage
Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability, Second Edition explores the challenges for the transition into a sustainable hydrogen economy. In this book, experts from various academic backgrounds discuss the tools and methodologies for the analysis, planning, design, and optimization of hydrogen supply chains. They examine the available technologies for hydrogen production, storage, transport, distribution, and energy conversion, providing a cross cutting perspective on their sustainability.This second edition of Hydrogen Economy is fully updated with new technologies and tools for design, optimization, assessment, and decision-making, and includes twelve new chapters divided into two new sections. Section III examines advanced hydrogen routines and technologies, including fuel cells and hybrid electric vehicles, new storage technologies, and biohydrogen production from waste, allowing for a more complete life cycle assessment of the entire supply chain. Section IV provides new insights into policy and future developments, discussing the role of Grey, Blue, and Green hydrogen in the energy transition, the application of hydrogen in decarbonization of heavy industry, hydrogen safety, and more, substantially broadening the scope of the 2nd Edition.Providing a broad overview of the subject and well-recognized tools to manage hydrogen sustainability, Hydrogen Economy Second Edition is an invaluable resource for engineering researchers and PhD students in energy, environmental and industrial areas, energy economy researchers, practicing hydrogen energy engineers and technicians, energy and environmental consultants, life cycle assessment practitioners and consultants. - Provides a broad perspective of the issues related to environmental, social and economic sustainability of hydrogen energy and its future perspectives - Presents the current applied research and available tools for managing and assessing hydrogen energy sustainability, such as LCA, optimization, multi-criteria decision making and supply chain optimization - Explores how experts in the field handle all issues related to the application of life cycle assessment for hydrogen production, storage, transport, distribution, safety, and end use
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.