Download Free Buckling And Postbuckling Of Composite Plates Book in PDF and EPUB Free Download. You can read online Buckling And Postbuckling Of Composite Plates and write the review.

Contributed by leading authorities in the field from around the world, this text provides a comprehensive insight into buckling and postbuckling. Basic theory, methods of buckling analysis and their application, the effect of external variables such as temperature and humidity on the buckling response and buckling tests are all covered.
This book contains eight chapters treating the stability of all major areas of the flexural theory. It covers the stability of structures under mechanical and thermal loads and all areas of structural, loading and material types. The structural element may be assumed to be made of a homogeneous/isotropic material, or of a functionally graded material. Structures may experience the bifurcation phenomenon, or they may follow the postbuckling path. This volume explains all these aspects in detail. The book is self-contained and the necessary mathematical concepts and numerical methods are presented in such a way that the reader may easily follow the topics based on these basic tools. It is intended for people working or interested in areas of structural stability under mechanical and/or thermal loads. Some basic knowledge in classical mechanics and theory of elasticity is required.
This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.
This book presents a liber amicorum dedicated to Wolfgang H. Müller, and highlights recent advances in Prof. Müller’s major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Müller’s friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.