Download Free Bubbles Drops And Particles In Non Newtonian Fluids Book in PDF and EPUB Free Download. You can read online Bubbles Drops And Particles In Non Newtonian Fluids and write the review.

Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multipha
The third edition of Bubbles, Drops, and Particles in Non-Newtonian Fluids provides comprehensive coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. Thoroughly updating and expanding its best-selling predecessor, this edition addresses numerical and experimental developments in non-Newtonian particulate systems. It includes a new chapter on heat transfer in non-Newtonian fluids in the free and mixed convection regimes and thus covers forced convection regimes separately in this edition. Salient Features: Demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows Addresses heat transfer in Generalized Newtonian Fluid (GNF), visco-plastic and visco-elastic fluids throughout the book and outlines potential strategies for heat transfer enhancement Provides a new detailed section on the effect of confinement on heat transfer from bluff-bodies in non-Newtonian fluids Written in a clear and concise manner, this book remains an excellent handbook and reference. It is essential reading for students and researchers interested in exploring particle motion in different types of non-Newtonian systems encountered in disciplines across engineering and the sciences.
Provides thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. Proveds a new detailed section on the effect of confinement on heat transfer from bluff-bodies Demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows. Addresses heat transfer in viscoplastic fluids throughout the entire book. Highlights qualitative differences between the response of a Newtonian and non-Newtonian fluids in the complex flows encountered in processing applications
Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows. Completely revised and expanded, this second edition covers macroscopic momentum and heat/mass transfer from a single rigid or fluid particle or ensembles of particles involving strong inter-particle interactions including packed beds, fluidized beds, and porous media with different types of non-Newtonian fluids. It reflects advances made since the publication of the previous, bestselling edition with new material on topics such as extensional flow; time-independent, time-dependent and visco-elastic fluids; free settling behavior of non-spherical particles; and particle motion in visco-elastic and visco-plastic fluids, boundary layer flows, flows in porous media, and falling object rheometry. An excellent reference and handbook dealing with the technological aspects of non-Newtonian materials encountered in nature and in technology, this book highlights qualitative differences between the response of a Newtonian and non-Newtonian fluids in the complex flows encountered in processing applications.
Describes the advances in the transport phenomena of particles, drops and bubbles in complex fluids. This book contains contributions from experts in areas such as particle deposition in membranes, flow of granular mixtures, food suspensions, foams, electro kinetic and thermo capillary driven flows, and two-phase flows.
1. Objective and Scope Bubbles, drops and rigid particles occur everywhere in life, from valuable industrial operations like gas-liquid contracting, fluidized beds and extraction to such vital natural processes as fermentation, evaporation, and sedimentation. As we become increasingly aware of their fundamental role in industrial and biological systems, we are driven to know more about these fascinating particles. It is no surprise, therefore, that their practical and theoretical implications have aroused great interest among the scientific community and have inspired a growing number of studies and publications. Over the past ten years advances in the field of small Reynolds numbers flows and their technological and biological applications have given rise to several definitive monographs and textbooks in the area. In addition, the past three decades have witnessed enormous progress in describing quantitatively the behaviour of these particles. However, to the best of our knowledge, there are still no available books that reflect such achievements in the areas of bubble and drop deformation, hydrodynamic interactions of deformable fluid particles at low and moderate Reynolds numbers and hydrodynamic interactions of particles in oscillatory flows. Indeed, only one more book is dedicated entirely to the behaviour of bubbles, drops and rigid particles ["Bubbles, Drops and Particles" by Clift et al. (1978)] and the authors state its limitations clearly in the preface: "We treat only phenomena in which particle-particle interactions are of negligible importance. Hence, direct application of the book is limited to single-particle systems of dilute suspensions.
This volume offers a unified treatment and critical review of the literature related to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. 1978 edition.
The presence of drops, bubbles, and particles affects the behavior and response of complex multiphase fluids. In many applications, these complex fluids have more than one non-Newtonian component, e.g., polymer melts, liquid crystals, and blood plasma. In fact, most fluids exhibit non-Newtonian behaviors, such as yield stress, viscoelastity, viscoplasticity, shear thinning, or shear thickening, under certain flow conditions. Even in the complex fluids composed of Newtonian components, the coupling between different components and the evolution of internal boundaries often lead to a complex rheology. Thus the dynamics of drops, bubbles, and particles in both Newtonian fluids and non-Newtonian fluids are crucial to the understanding of the macroscopic behavior of complex fluids. This Special Issue aims to gather a wide variety of papers that focus on drop, bubble and particle dynamics in complex fluids. Potential topics include, but are not limited to, drop deformation, rising drops, pair-wise drop interactions, drop migration in channel flows, and the interaction of particles with flow systems such as pastes and slurries, glasses, suspensions, and emulsions. We emphasize numerical simulations, but also welcome experimental and theoretical contributions.
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.
This book bridges the gap between the theoretical work of the rheologist, and the practical needs of those who have to design and operate the systems in which these materials are handled or processed. It is an established and important reference for senior level mechanical engineers, chemical and process engineers, as well as any engineer or scientist who needs to study or work with these fluids, including pharmaceutical engineers, mineral processing engineers, medical researchers, water and civil engineers. This new edition covers a considerably broader range of topics than its predecessor, including computational fluid dynamics modelling techniques, liquid/solid flows and applications to areas such as food processing, among others. * Written by two of the world's leading experts, this is the only dedicated non-Newtonian flow reference in print. * Since first publication significant advances have been made in almost all areas covered in this book, which are incorporated in the new edition, including developments in CFD and computational techniques, velocity profiles in pipes, liquid/solid flows and applications to food processing, and new heat/mass transfer methods and models. * Covers both basic rheology and the fluid mechanics of NN fluids ? a truly self-contained reference for anyone studying or working with the processing and handling of fluids