Download Free Broadband Direct Rf Digitization Receivers Book in PDF and EPUB Free Download. You can read online Broadband Direct Rf Digitization Receivers and write the review.

This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains. A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis. Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.
This comprehensive resource provides the latest information on digitization and reconstruction (D&R) of analog signals in digital radios. Readers learn how to conduct comprehensive analysis, concisely describe the major signal processing procedures carried out in the radios, and demonstrate the dependence of these procedures on the quality of D&R. The book presents and analyzes the most promising and theoretically sound ways to improve the characteristics of D&R circuits and illustrate the influence of these improvements on the capabilities of digital radios. The book is intended to bridge the gap that exists between theorists and practical engineers developing D&R techniques by introducing new signal transmission and reception methods that can effectively utilize the unique capabilities offered by novel digitization and reconstruction techniques.
This book comprises select papers from the international conference on Research in Intelligent and Computing in Engineering (RICE 2019) held at Hanoi University of Industry, Hanoi, Vietnam. The volume focuses on current research on various computing models such as centralized, distributed, cluster, grid and cloud. The contents cover recent advances in wireless sensor networks, mobile ad hoc networks, internet of things, machine learning, grid and cloud computing, and their various applications. The book will help researchers as well as professionals to gain insight into the rapidly evolving fields of internet computing and data mining.
Software defined radio (SDR) is one of the most important topics of research, and indeed development, in the area of mobile and personal communications. SDR is viewed as an enabler of global roaming and as a unique platform for the rapid introduction of new services into existing live networks. It therefore promises mobile communication networks a major increase in flexibility and capability. SDR brings together two key technologies of the last decade - digital radio and downloadable software. It encompasses not only reconfiguration of the air interface parameters of handset and basestation products but also the whole mobile network, to facilitate the dynamic introduction of new functionality and mass-customised applications to the user's terminal, post-purchase. This edited book, contributed by internationally respected researchers and industry practitioners, describes the current technological status of radio frequency design, data conversion, reconfigurable signal processing hardware, and software issues at all levels of the protocol stack and network. The book provides a holistic treatment of SDR addressing the full breadth of relevant technologies - radio frequency design, signal processing and software - at all levels. As such it provides a solid grounding for a new generation of wireless engineers for whom radio design in future will assume dynamic flexibility as a given. In particular it explores * The unique demands of SDR upon the RF subsystem and their implications for front end design methodologies * The recent concepts of the 'digital front end' and 'parametrization' * The role and key influence of data conversion technologies and devices within software radio, essential to robust product design * The evolution of signal processing technologies, describing new architectural approaches * Requirements and options for software download * Advances in 'soft' protocols and 'on-the-fly' software reconfiguration * Management of terminal reconfiguration and its network implications * The concepts of the waveform description language The book also includes coverage of * Potential breakthrough technologies, such as superconducting RSFQ technology and the possible future role of MEMS in RF circuitry * Competing approaches, eg all-software radios implemented on commodity computing vs advanced processing architectures that dynamically optimise their configuration to match the algorithm requirements at a point in time The book opens with an introductory chapter by Stephen Blust, Chair of the ITU-R WP8F Committee and Chair of the SDR Forum presenting a framework for SDR, in terms of definitions, evolutionary perspectives, introductory timescales and regulation. Suitable for today's engineers, technical staff and researchers within the wireless industry, the book will also appeal to marketing and commercial managers who need to understand the basics and potential of the technology for future product development. Its balance of industrial and academic contributors also makes it suitable as a text for graduate and post-graduate courses aiming to prepare the next generation of wireless engineers.
A practical approach to RF circuit design, this volume covers nonlinear circuits and modelling, RF transistor amplifiers, oscillators and mixers.
This book is aimed to bring the emerging application aspects of THz technology and various modules used for its successful realization. It gathers scientific technological novelties and advancements already developed or under development in the academic and research communities. This book focuses on recent advances, different research issues in terahertz technology and would also seek out theoretical, methodological, well-established and validated empirical work dealing with these different topics. In particular, this textbook covers design considerations and current trends of THz antennas and antenna arrays to deal with the transmission and reception of THz EM waves. It also presents a discussion on metamaterial structures, meta-surfaces, and absorbers to be used for some kind of sensing and detection applications. Furthermore, it reports on THz wireless communication aspects, 6G network issues and challenges, advantages and disadvantages, generation and detection of THz waves, Signal and Communication Processing for THz communication, reconfigurable low-noise amplifier (LNA) design, III-Nitride HEMTs for THz Applications, photonic crystal fiber for sensing applications, THz Design Variable Estimation by Deep Optimization, and THz Imaging issues. Once the readers finish studying this book then they will learn about the importance of THz technology, advancement in the field, applications, THz modules like antennas, MIMO and DRAs, communication aspects, LNAs, generation of THz waves, etc and future scope. It also leads to enhancement in their knowledge in THz technology, gives a platform to future technology and novel applications realization.
Provides a detailed analysis of the standards and technologies enabling applications for the wireless Internet of Things The Wireless Internet of Things: A Guide to the Lower Layers presents a practitioner’s perspective toward the Internet of Things (IoT) focusing on over-the-air interfaces used by applications such as home automation, sensor networks, smart grid, and healthcare. The author—a noted expert in the field—examines IoT as a protocol-stack detailing the physical layer of the wireless links, as both a radio and a modem, and the media access control (MAC) that enables communication in congested bands. Focusing on low-power wireless personal area networks (WPANs) the text outlines the physical and MAC layer standards used by ZigBee, Bluetooth LE, Z-Wave, and Thread. The text deconstructs these standards and provides background including relevant communication theory, modulation schemes, and access methods. The author includes a discussion on Wi-Fi and gateways, and explores their role in IoT. He introduces radio topologies used in software-defined radio implementations for the WPANs. The book also discusses channel modelling and link budget analysis for WPANs in IoT. This important text: Introduces IEEE 802.15.4, ITU-T G.9959, and Bluetooth LE as physical layer technology standards enabling wireless IoT Takes a layered approach in order to cultivate an appreciation for the various standards that enable interoperability Provides clarity on wireless standards with particular focus on actual implementation Written for IoT application and platform developers as well as digital signal processing, network, and wireless communication engineers; The Wireless Internet of Things: A Guide to the Lower Layersoffers an inclusive overview of the complex field of wireless IoT, exploring its beneficial applications that are proliferating in a variety of industries.
Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.
This new edition includes the latest on quantitative MR, safety, multi-band excitation, Dixon imaging and MR elastography.
The CMOS technology are has quickly grown calling for a new text---and here it is covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems the book not only describes the thought process behind each circuit topology but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies.Design of Analog CMOS Integrated Circuits deals with the analysis and design of analog CMOS integrated circuits emphasizing recent technological developments and design paradigms that students and practicing engineers need to master to succeed in today's industry. Based on the author's teaching and research experience in the past ten years the text follows three general principles: (1) Motivate the reader by describing the significance and application of each idea with real-world problems; (2) Force the reader to look at concepts from an intuitive point of view preparing him/her for more complex problems; (3) Complement the intuition by rigorous analysis confirming the results obtained by the intuitive yet rough approach.