Download Free Bridge Inspection And Maintenance Manual Book in PDF and EPUB Free Download. You can read online Bridge Inspection And Maintenance Manual and write the review.

This guide provides bridge related definitions and corresponding commentaries, as well as the framework for a systematic approach to a preventive maintenance program. The goal is to provide guidance on bridge preservation. This guide is intended for Federal, State, and local bridge engineers, area engineers, bridge owners, and bridge preservation practitioners.
Addresses key topic within bridge engineering, from history and aesthetics to design, construction and maintenance issues. This book is suitable for practicing civil and structural engineers in consulting firms and government agencies, bridge contractors, research institutes, and universities and colleges.
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.
Tunnels represent a significant financial investment with challenging design, construction, and operational issues. Tunnels that are not adequately maintained usually require more costly and extensive repairs. To help safeguard tunnel users and to ensure reliable levels of service, the FHWA developed the National Tunnel Inspection Standards (NTIS), the Tunnel Operations Maintenance Inspection and Evaluation (TOMIE) Manual, and the Specifications for National Tunnel Inventory (SNTI). In accordance with the NTIS, this Manual describes methods for improving the safety and performance of roadway tunnel operation, maintenance, inspection, and evaluation programs.
Timber's strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction. Timber is capable of supporting short-term overloads without adverse effects. Contrary to popular belief, large wood members provide good fire resistance qualities that meet or exceed those of other materials in severe fire exposures. From an economic standpoint, wood is competitive with other materials on a first-cost basis and shows advantages when life cycle costs are compared. Timber bridges can be constructed in virtually any weather conditions, without detriment to the material. Wood is not damaged by continuous freezing and thawing and resists harmful effects of de-icing agents, which cause deterioration in other bridge materials. Timber bridges do not require special equipment for installation and can normally be constructed without highly skilled labor. They also present a natural and aesthetically pleasing appearance, particularly in natural surroundings. The misconception that wood provides a short service life has plagued timber as a construction material. Although wood is susceptible to decay or insect attack under specific conditions, it is inherently a very durable material when protected from moisture. Many covered bridges built during the 19th century have lasted over 100 years because they were protected from direct exposure to the elements. In modem applications, it is seldom practical or economical to cover bridges; however, the use of wood preservatives has extended the life of wood used in exposed bridge applications. Using modem application techniques and preservative chemicals, wood can now be effectively protected from deterioration for periods of 50 years or longer. In addition, wood treated with preservatives requires little maintenance and no painting. Another misconception about wood as a bridge material is that its use is limited to minor structures of no appreciable size. This belief is probably based on the fact that trees for commercial timber are limited in size and are normally harvested before they reach maximum size. Although tree diameter limits the size of sawn lumber, the advent of glued-laminated timber (glulam) some 40 years ago provided designers with several compensating alternatives. Glulam, which is the most widely used modem timber bridge material, is manufactured by bonding sawn lumber laminations together with waterproof structural adhesives. Thus, glulam members are virtually unlimited in depth, width, and length and can be manufactured in a wide range of shapes. Glulam provides higher design strengths than sawn lumber and provides better utilization of the available timber resource by permitting the manufacture of large wood structural elements from smaller lumber sizes. Technological advances in laminating over the past four decades have further increased the suitability and performance of wood for modern highway bridge applications.
The Guide Manual for Bridge Element Inspection builds on the element-level condition assessment methods developed in the AASHTO Guide for Commonly Recognized Structural Elements, which it replaces. Improvements have been made to fully capture the condition of the elements by reconfiguring the element language to utilize multiple distress paths within the defined condition states. The multi-path distress language provides the means to fully incorporate all possible defects within the overall condition assessment of the element. The overall condition of an element can be utilized in this aggregate form, or broken down into specific defects present as desired by the agency for Bridge Management System (BMS) use. The Bridge Element Inspection Manual provides a comprehensive set of bridge elements that is designed to be flexible in nature to satisfy the needs of all agencies. The complete set of elements capture the components necessary for an agency to manage all aspects of the bridge inventory utilizing the full capability of a BMS -- Publisher's website.