Download Free Brain Networks In Aging Reorganization And Modulation By Interventions Book in PDF and EPUB Free Download. You can read online Brain Networks In Aging Reorganization And Modulation By Interventions and write the review.

Old adults undertake multiple reduced cognitive abilities in aging, which are accompanied with specific brain reorganization in forms of regional brain activity and brain tissues, inter-region connectivity, and topology of whole brain networks in both function and structure. The plasticity changes of brain activities in old adults are explained by the mechanisms of compensation and dedifferentiation. For example, older adults have been observed to have greater, usually bilateral, prefrontal activities during memory tasks compared to the typical unilateral prefrontal activities in younger adults, which was explained as a compensation for the reduced brain activities in visual processing cortices. Dedifferentiation is another mechanism to explain that old adults are with much less selective and less distinct activity in task-relevant brain regions compared with younger adults. A larger number of studies have examined the plasticity changes of brain from the perspective of regional brain activities. However, studies on only regional brain activities cannot fully elucidate the neural mechanisms of reduced cognitive abilities in aging, as multiple regions are integrated together to achieve advanced cognitive function in human brain. In recent years, brain connectivity/network, which targets how brain regions are integrated, have drawn increasing attention in neuroscience with the development of neuroimaging techniques and graph theoretical analysis. Connectivity quantifies functional association or neural fibers between two regions that may be spatially far separated, and graph theoretical analysis of brain network examines the complex interactions among multiple regions from the perspective of topology. Studies showed that compared to younger adults, older adults had altered strength of task-relevant functional connectivity between specific brain regions in cognitive tasks, and the alternation of connectivity are correlated to behavior performance. For example, older adults had weaker functional connectivity between the premotor cortex and a region in the left dorsolateral prefrontal cortex in a working memory task. Interventions like cognitive training and neuro-modulation (e.g., transcranial magnetic stimulation) have been shown to be promising in regaining or retaining the decreasing cognitive abilities in aging. However, only few neuroimaging studies have examined the influence of interventions to old adult’s brain activity, connectivity, and cognitive performance. This Research Topic calls for contributions on brain network of subjects in normal aging or with age-related diseases like mild cognitive impairment and Alzheimer’s disease. The studies are expected to be based on neuroimaging techniques including but not limited to functional magnetic resonance imaging, Electroencephalography, and diffusion tensor imaging, and contributions on the influence of interventions to brain networks in aging are highly encouraged. All these studies would enrich our understanding of neural mechanisms underlying aging, and offer new insights for developing possible interventions to retain cognitive abilities in aging subjects.
Old adults undertake multiple reduced cognitive abilities in aging, which are accompanied with specific brain reorganization in forms of regional brain activity and brain tissues, inter-region connectivity, and topology of whole brain networks in both function and structure. The plasticity changes of brain activities in old adults are explained by the mechanisms of compensation and dedifferentiation. For example, older adults have been observed to have greater, usually bilateral, prefrontal activities during memory tasks compared to the typical unilateral prefrontal activities in younger adults, which was explained as a compensation for the reduced brain activities in visual processing cortices. Dedifferentiation is another mechanism to explain that old adults are with much less selective and less distinct activity in task-relevant brain regions compared with younger adults. A larger number of studies have examined the plasticity changes of brain from the perspective of regional brain activities. However, studies on only regional brain activities cannot fully elucidate the neural mechanisms of reduced cognitive abilities in aging, as multiple regions are integrated together to achieve advanced cognitive function in human brain. In recent years, brain connectivity/network, which targets how brain regions are integrated, have drawn increasing attention in neuroscience with the development of neuroimaging techniques and graph theoretical analysis. Connectivity quantifies functional association or neural fibers between two regions that may be spatially far separated, and graph theoretical analysis of brain network examines the complex interactions among multiple regions from the perspective of topology. Studies showed that compared to younger adults, older adults had altered strength of task-relevant functional connectivity between specific brain regions in cognitive tasks, and the alternation of connectivity are correlated to behavior performance. For example, older adults had weaker functional connectivity between the premotor cortex and a region in the left dorsolateral prefrontal cortex in a working memory task. Interventions like cognitive training and neuro-modulation (e.g., transcranial magnetic stimulation) have been shown to be promising in regaining or retaining the decreasing cognitive abilities in aging. However, only few neuroimaging studies have examined the influence of interventions to old adult's brain activity, connectivity, and cognitive performance. This Research Topic calls for contributions on brain network of subjects in normal aging or with age-related diseases like mild cognitive impairment and Alzheimer's disease. The studies are expected to be based on neuroimaging techniques including but not limited to functional magnetic resonance imaging, Electroencephalography, and diffusion tensor imaging, and contributions on the influence of interventions to brain networks in aging are highly encouraged. All these studies would enrich our understanding of neural mechanisms underlying aging, and offer new insights for developing possible interventions to retain cognitive abilities in aging subjects.
Previous studies showed that both healthy and pathological aging are associated with changes in brain structure and function of the mature human brain. The most prominent anatomical alteration are changes in prefrontal cortex morphology, volume loss and reduced white-matter integrity and hippocampal atrophy. Cognitive decline affects mainly the performance of episodic memory, speed of sensory information processing, working memory, inhibitory function and long-term memory. It has been also proposed that due to the aforementioned changes the aging brain engages in compensatory brain mechanism such as a broader activation of cortical regions (mainly frontal) rather than specialized activation. Evidence suggests that similar changes occur with pathological aging but to a greater extent. In this case information flow is disrupted due to neurodegeneration, functional activation of posterior (occipito-temporal) regions is decreased and as a consequence the brain fails to process sensorial input in the ventral pathway and cognitive deficits appear. In the last years, functional alterations associated with aging have been studied using the mathematical notion of graph theory that offers an integrative approach since it examines different properties of the brain network: 1) Organization level 2) amount of local information processing, 3) information flow 4) cortical community structure and 5) identification of functional / anatomical hubs. So, graph theory offers an attractive way to model brain networks organization and to quantify their pathological deviations. Previous studies have already employed this mathematical notion and demonstrated that age-related neurodegeneration is often accompanied by loss of optimal network organization either due to diminished local information processing or due to progressive isolation of distant brain regions. They have also found that changes in network properties may be present even in the preclinical phase, which could be taken as a biological marker of disease.
Recent studies show that more people than ever before are reaching old age in better health and enjoying that health for a longer time. This Handbook outlines the latest discoveries in the study of aging from bio-medicine, psychology, and socio-demography. It treats the study of aging as a multidisciplinary scientific subject, since it requires the interplay of broad disciplines, while offering high motivation, positive attitudes, and behaviors for aging well, and lifestyle changes that will help people to stay healthier across life span and in old age. Written by leading scholars from various academic disciplines, the chapters delve into the most topical aspects of aging today - including biological mechanisms of aging, aging with health, active and productive aging, aging with satisfaction, aging with respect, and aging with dignity. Aimed at health professionals as well as general readers, this Cambridge Handbook offers a new, positive approach to later life.
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
This book describes the changes in the brain and in cognitive functions that occur with aging in the absence of a neurological, psychiatric, or medical disease. It discusses aging-related changes in many brain functions, including memory, language, sensory perception, motor function, creativity, attention, executive functions, emotions and mood. The neural mechanisms that may account for specific aging-related changes in cognition, perception and behavior are explored, as well as the means by which aging-related cognitive decrements can be managed and possibly ameliorated. Consequently, this book will be of value to clinicians, including neurologists, psychiatrists, geriatricians, primary care physicians, psychologists and speech-language pathologists. In addition, researchers and graduate students who want to learn about the aging brain will find this an indispensable guide.
Increasing evidence identifies the possibility of restoring function to the damaged brain via exogenous therapies. One major target for these advances is stroke, where most patients can be left with significant disability. Treatments have the potential to improve the victim's quality of life significantly and reduce the time and expense of rehabilitation. Brain Repair After Stroke reviews the biology of spontaneous brain repair after stroke in animal models and in humans. Detailed chapters cover the many forms of therapy being explored to promote brain repair and consider clinical trial issues in this context. This book provides a summary of the neurobiology of innate and treatment-induced repair mechanisms after hypoxia and reviews the state of the art for human therapeutics in relation to promoting behavioral recovery after stroke. Essential reading for stroke physicians, neurologists, rehabilitation physicians and neuropsychologists.