Download Free Botanical Microtechnique And Cytochemistry Book in PDF and EPUB Free Download. You can read online Botanical Microtechnique And Cytochemistry and write the review.

Hands-on experimentalists describe the cutting-edge microscopical methods needed for the effective study of plant cell biology today. These powerful techniques, all described in great detail to ensure successful experimental results, range from light microscope cytochemistry, autoradiography, and immunocytochemistry, to recent developments in fluorescence, confocal, and dark-field microscopies. Important advances in both conventional and scanning electron microscopies are also fully developed, together with such state-of-the-art ancillary techniques as high-resolution autoradiography, immunoelectron microscopy, X-ray microanalysis, and electron systems imaging. Easy-to-use and up-to-date, Methods in Plant Electron Microscopy and Cytochemistry offers today's plant scientists a first class collection of readily reproducible light and electron microscopical methods that will prove the new standard for all working in the field.
A proper understanding of the structural organization of the plant body is essential to any study in plant biology. Experimental studies in vivo and in situ will lead to structural, physiological, and cellular changes of the experimental material. To study macroscopic and microscopic changes, different histological methods and microtechniques can be used as they provide valuable information of the experimental system. In addition, the observed structural changes allow investigators to set hypothesis for further studies based on one’s own observation. Thus, proper selection and utilization of microtechniques are a must for the success of a research program. At present, an up-to-date collection of protocols are not readily available in the literature. The latest work in plant microtechniques was published in 1999 by Ruzin but many others are no longer in print [e.g., Jensen (1964); O’Brien and McCully (1981)]. Furthermore, a majority of published works focus on techniques related to general processing and staining procedures. A comprehensive treatment that encompasses broader applications of microtechniques to other disciplines is lacking [e.g., archeology, wood science, etc.]. There is a need to create a comprehensive volume of botanical methods and protocols which includes traditional and novel techniques that can be used by researchers in plant science and investigators in other disciplines that require plant microtechniques in their research and teaching. This book covers a wide variety of applications and brings them up-to-date to make them understandable and relevant, especially to students using the methods for the first time. It is our intention to create a useful reference for plant histology and related methods that will serve as a foundation for plant scholars, researchers, and teachers in the plant sciences.​
1. Microscope construction, Use, and care; 2. Collecting and Subdividing plants materials 3. Fixation and storage 4. Processing and embedding 5. Microtomy 6. Staining Paraffin and plastic sections 7. Preparation of whole mounts and macerations 8. Principles of optics and microscopy 9 Types of microscopy 10. Photomicrography; 11. Cytochemistry
A completely new practical guide to both new and classical methods of slide-making which is easy-to-read and easy-to-understand. Biological Microtechnique contains a wealth of practical detail which will provide a firm grounding in preparative methods for light microscopy.
Various methodologies designed to study cell walls are compiled in this book. Methods in Cell Wall Cytochemistry covers the use of modern dyes, fluorescent chemicals, lectins, and antibody technology (immunocytochemisty.) Cell wall morphology and chemical composition is covered as well as light and fluorescent cytochemistry; transmission electron microscopic cytochemistry; lectin cytochemistry; and, special emphasis on immunocytochemistry. Addressing an emerging area of research and technology, this book will appeal to plant pathologists, cell biologists, as well as workers interested in stress response and those employing cell walls for biotechnological research.
The field of plant taxonomy has transformed rapidly over the past fifteen years, especially with regard to improvements in cladistic analysis and the use of new molecular data. The second edition of this popular resource reflects these far-reaching and dramatic developments with more than 3,000 new references and many new figures. Synthesizing current research and trends, Plant Taxonomy now provides the most up-to-date overview in relation to monographic, biodiversity, and evolutionary studies, and continues to be an essential resource for students and scholars. This text is divided into two parts: Part 1 explains the principles of taxonomy, including the importance of systematics, characters, concepts of categories, and different approaches to biological classification. Part 2 outlines the different types of data used in plant taxonomic studies with suggestions on their efficacy and modes of presentation and evaluation. This section also lists the equipment and financial resources required for gathering each type of data. References throughout the book illuminate the historical development of taxonomic terminology and philosophy while citations offer further study. Plant Taxonomy is also a personal story of what it means to be a practicing taxonomist and to view these activities within a meaningful conceptual framework. Tod F. Stuessy recalls the progression of his own work and shares his belief that the most creative taxonomy is done by those who have a strong conceptual grasp of their own research.
Correlative Microscopy in Biology: Instrumentation and Methods presents the detailed methodology of biological correlative microscopy, a technology that allows the acquisition of multiple data from single tissue block, cell, or section. The chapters in the book include detailed and complete instructions on the preparatory procedures. The book has 20 chapters that deal with various forms and systems of microscopy. Some of the forms and methods used in the book include light, scanning electron, fluorescence, scanning transmission electron, and ion microscopy, as well as combined light and electron and transmission electron microscope. Other methods and their applications are all discussed in detail in the book. This book will help students apply the methods without outside help as each methodology is presented in a step-by-step approach, including applications and techniques. Aside from students, the book will also be good reference for teachers, scientists, and researchers in the fields of biology, biochemistry, and medicine.