Download Free Borcherds Products On O2l And Chern Classes Of Heegner Divisors Book in PDF and EPUB Free Download. You can read online Borcherds Products On O2l And Chern Classes Of Heegner Divisors and write the review.

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda''s 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.
This volume contains lecture notes from the seminars [alpha]Number Theory", [alpha]Algebraic Geometry" and [alpha]Geometric methods in representation theory" which took place at the Mathematics Institute of the University of Göttingen during the Winter Term 2003-2004. Most contributions report on recent work by the authors.
Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.
This volume consists of a selection of research-type articles on dynamical systems, evolution equations, analytic number theory and closely related topics. A strong emphasis is on a fair balance between theoretical and more applied work, thus spanning the chasm between abstract insight and actual application. Several of the articles are expected to be in the intersection of dynamical systems theory and number theory. One article will likely relate the topics presented to the academic achievements and interests of Prof. Leutbecher and shed light on common threads among all the contributions.
This volume examines the impact of the 'Monstrous Moonshine' paper on mathematics and theoretical physics.
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.