Download Free Bitangential Structured Interpolation Theory Book in PDF and EPUB Free Download. You can read online Bitangential Structured Interpolation Theory and write the review.

An essentially self-contained treatment ideal for mathematicians, physicists or engineers whose research is connected with inverse problems.
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
About one half of the papers in this volume are based on lectures which were pre sented at a conference at Leipzig University in August 1994, which was dedicated to Vladimir Petrovich Potapov. He would have been eighty years old. These have been supplemented by: (1) Historical material, based on reminiscences of former colleagues, students and associates of V.P. Potapov. (2) Translations of a number of important papers (which serve to clarify the Potapov approach to problems of interpolation and extension, as well as a number of related problems and methods) and are relatively unknown in the West. (3) Two expository papers, which have been especially written for this volume. For purposes of discussion, it is convenient to group the technical papers in this volume into six categories. We will now run through them lightly, first listing the major theme, then in parentheses the authors of the relevant papers, followed by discussion. Some supplementary references are listed at the end; OT72 which appears frequently in this volume, refers to Volume 72 in the series Operator Theory: Advances and Applications. It was dedicated to V.P. Potapov. 1. Multiplicative decompositions (Yu.P. Ginzburg; M.S. Livsic, I.V. Mikhailova; V.I. Smirnov).
This volume consists of eight papers containing recent advances in interpolation theory for matrix functions and completion theory for matrices and operators. In the first paper, D. Alpay and P. Loubaton, "The tangential trigonometric moment problem on an interval and related topics" a trigonometric moment problem on an interval for matrix valued functions is studied. The realization approach plays an important role in solving this problem. The second paper, M. Bakonyi, V.G. Kaftal, G. Weiss and H.J. Woerdeman, "Max imum entropy and joint norm bounds for operator extensions" is dedicated to a matrix completion problem. In it is considered the problem when only the lower triangular part of the operator entries of a matrix is identified. Completions which have simultaneously a small usual norm and a small Hilbert-Schmidt norm are considered. Bounds for these norms are obtained. The analysis of the maximum entropy extension plays a special role. The paper contains applications to nest algebras and integral operators. The third paper, J .A. Ball, I. Gohberg and M.A. Kaashoek, "Bitangential interpola tion for input-output operators of time varying systems: the discrete time case" contains solutions of time varying interpolation problems. The main attention is focused on the time varying analog of the Nevanlinna-Pick tangential problem in the case where the inter polation conditions appear from two sides. The state space theory of time varying systems play an important role.
This volume is dedicated to Harry Dym, a leading expert in operator theory, on the occasion of his sixtieth birthday. The book opens with an autobiographical sketch, a list of publications and a personal account of I. Gohberg on his collaboration with Harry Dym. The mathematical papers cover Krein space operator theory, Schur analysis and interpolation, several complex variables and Riemann surfaces, matrix theory, system theory, and differential equations and mathematical physics. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
This volume is devoted to Joseph A. (Joe) Ball’s contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball’s career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H∞-theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre. Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball’s PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
A comprehensive introduction to the theory of J-contractive and J-inner matrix valued functions with respect to the open upper half-plane and a number of applications of this theory. It will be of particular interest to those with an interest in operator theory and matrix analysis.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.