Download Free Bipartite Graphs And Their Applications Book in PDF and EPUB Free Download. You can read online Bipartite Graphs And Their Applications and write the review.

This is the first book which deals solely with bipartite graphs. Together with traditional material, the reader will also find many new and unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, Chemistry, Communication Networks and Computer Science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory.
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
This well-organized reference is a definitive encyclopedia for the literature on graph classes. It contains a survey of more than 200 classes of graphs, organized by types of properties used to define and characterize the classes, citing key theorems and literature references for each. The authors state results without proof, providing readers with easy access to far more key theorems than are commonly found in other mathematical texts. Interconnections between graph classes are also provided to make the book useful to a variety of readers.
In this book, the authors systematically define the new notion of linguistic graphs associated with a linguistic set of a linguistic variable. We can also define the notion of directed linguistic graphs and linguistic-weighted graphs. Chapter two discusses all types of linguistic graphs, linguistic dyads, linguistic triads, linguistic wheels, complete linguistic graphs, linguistic connected graphs, disconnected linguistic graphs, linguistic components of the graphs and so on. Further, we define the notion of linguistic subgraphs of a linguistic graph. However, like usual graphs, we will not be able to arbitrarily connect any two linguistic words of a linguistic set associated with a linguistic variable. They can be related or adjacent depending on the linguistic variable associated with the linguistic set. This is an exceptional feature of a linguistic graph.
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.
The intuitive diagrammatic nature of graphs makes them useful in modelling systems in engineering problems. This text gives an account of material related to such applications, including minimal cost flows and rectangular dissection and layouts. A major th
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.